- ~ PDF Download
e DIGITAL Associntion for 3722216.pdf
L)) ACM LIBRARY i sciner @m open) 26 December 2025

Check for

updates Total Citati. : 0
oot | Total Downloads:
{§ Latest updates: https://dl.acm.org/doi/10.1145/3722216 1403
Published: 14 August 2025
RESEARCH-ARTICLE Online AM: 11 March 2025
. . o . Accepted: 17 December 2024

Leveraging Risk Models to Improve Productivity for R 16 Dosoe o8

Effective Code Un-Freeze at Scale Received: 23 April 2024

Citation in BibTeX format

AUDRIS MOCKUS, Meta Platforms, Inc., Menlo Park, CA, United States
RUI ABREU, Meta Platforms, Inc., Menlo Park, CA, United States

PETER CHRISTOPHER RIGBY, Meta, Menlo Park, CA, United States
DAVID AMSALLEM, Meta Platforms, Inc., Menlo Park, CA, United States
PARVEEN BANSAL, Meta Platforms, Inc., Menlo Park, CA, United States

KAAVYA CHINNIAH, Meta Platforms, Inc., Menlo Park, CA, United
States

View all

Open Access Support provided by:
Meta Platforms, Inc.

Meta

ACM Transactions on Software Engineering and Methodology, Volume 34, Issue 7 (September 2025)
https://doi.org/10.1145/3722216
EISSN: 1557-7392

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3722216
https://dl.acm.org/doi/10.1145/3722216
https://dl.acm.org/doi/10.1145/contrib-81100250207
https://dl.acm.org/doi/10.1145/institution-60347712
https://dl.acm.org/doi/10.1145/contrib-81321488948
https://dl.acm.org/doi/10.1145/institution-60347712
https://dl.acm.org/doi/10.1145/contrib-81310487631
https://dl.acm.org/doi/10.1145/institution-60271648
https://dl.acm.org/doi/10.1145/contrib-81496667361
https://dl.acm.org/doi/10.1145/institution-60347712
https://dl.acm.org/doi/10.1145/contrib-99661534855
https://dl.acm.org/doi/10.1145/institution-60347712
https://dl.acm.org/doi/10.1145/contrib-99661534442
https://dl.acm.org/doi/10.1145/institution-60347712
https://dl.acm.org/doi/10.1145/institution-60347712
https://dl.acm.org/doi/10.1145/3722216
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60347712
https://dl.acm.org/doi/10.1145/institution-60271648
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3722216&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3722216&domain=pdf&date_stamp=2025-08-14

Leveraging Risk Models to Improve Productivity for
Effective Code Un-Freeze at Scale

AUDRIS MOCKUS, Meta Platforms Inc Menlo Park, California, USA and University of Tennessee,
Knoxville, Tennessee, USA

RUI ABREU, Meta Platforms Inc, Menlo Park, California, USA

PETER C. RIGBY , Concordia University, Montreal, Quebec, Canada and Concordia University, Montreal,
Quebec, Canada and Meta Platforms Inc, Menlo Park, California, USA

DAVID AMSALLEM, PARVEEN BANSAL, KAAVYA CHINNIAH, BRIAN ELLIS, PENG FAN,
JUN GE, BINGJIE HE, KELLY HIRANO, SAHIL KUMAR, AJAY LINGAPURAM, ANDREW
LOE, MEGH MEHTA, VENUS MONTES, MAHER SABA, GURSHARAN SINGH, MATT
STEINER, WEIYAN SUN, and SIRI UPPALAPATI, Meta Platforms Inc, Menlo Park, California, USA
NACHIAPPAN NAGAPPAN, Meta Platforms Inc, Palo Alto, California, USA

Changing software is essential to add needed functionality and to fix problems, but changes may introduce
defects that lead to outages. This motivates one of the oldest software quality control techniques: a temporary
prevention of non-critical changes to the codebase—code freeze. Despite its widespread use in practice, research
literature is scant. Historically, code freezes were used as a way to improve software quality by preventing
changes during periods before software releases, but code freezes significantly slow down development. To
address this shortcoming, we develop and evaluate a family of code un-freeze (permitting changes) strategies
tailored to different occasions and products at Meta. They are designed to un-freeze the maximum amount of
code without compromising quality. The three primary dimensions to un-freeze involve (a) the exact timing of
(and the reasoning behind it) the code freezes, (b) the parts of the organization or the codebase where the
codebase freeze is applied to, and (c) the method of screening of the code diffs during the code freeze with the
aim to allow low risk diffs and prevent only the most risky diffs.

Authors’ Contact Information: Audris Mockus (corresponding author), Meta Platforms Inc Menlo Park, California, USA
and University of Tennessee, Knoxville, Tennessee, USA; e-mail: audris@utk.edu; Rui Abreu, Meta Platforms Inc, Menlo
Park, California, USA; e-mail: rui@computer.org; Peter C. Rigby, Concordia University, Montreal, Quebec, Canada, and
Meta Platforms Inc, Menlo Park, California, USA; e-mail: rigbypc@gmail.com; David Amsallem, Meta Platforms Inc, Menlo
Park, California, USA; e-mail: amsallem@meta.com; Parveen Bansal, Meta Platforms Inc, Menlo Park, California, USA;
e-mail: pb001@meta.com; Kaavya Chinniah, Meta Platforms Inc, Menlo Park, California, USA; e-mail: kanmanic@meta.com;
Brian Ellis, Meta Platforms Inc, Menlo Park, California, USA; e-mail: bpe@meta.com; Peng Fan, Meta Platforms Inc,
Menlo Park, California, USA; e-mail: pefal@meta.com; Jun Ge, Meta Platforms Inc, Menlo Park, California, USA; e-
mail: jakege@meta.com; Bingjie He, Meta Platforms Inc, Menlo Park, California, USA; e-mail: bingjiehe@meta.com; Kelly
Hirano, Meta Platforms Inc, Menlo Park, California, USA; e-mail: hirano@meta.com; Sahil Kumar, Meta Platforms Inc, Menlo
Park, California, USA; e-mail: sahilkum@meta.com; Ajay Lingapuram, Meta Platforms Inc, Menlo Park, California, USA;
e-mail: ajaylin@meta.com; Andrew Loe, Meta Platforms Inc, Menlo Park, California, USA; e-mail: loe@meta.com; Megh
Mehta, Meta Platforms Inc, Menlo Park, California, USA; e-mail: meghmehta@meta.com; Venus Montes, Meta Platforms
Inc, Menlo Park, California, USA; e-mail: vmd@meta.com; Maher Saba, Meta Platforms Inc, Menlo Park, California, USA; e-
mail: mahersaba@meta.com; Gursharan Singh, Meta Platforms Inc, Menlo Park, California, USA; e-mail: gurshi@meta.com;
Matt Steiner, Meta Platforms Inc, Menlo Park, California, USA; e-mail: mattsteiner@meta.com; Weiyan Sun, Meta Platforms
Inc, Menlo Park, California, USA; e-mail: wysun@meta.com; Siri Uppalapati, Meta Platforms Inc, Menlo Park, California, USA;
e-mail: siri@meta.com; Nachiappan Nagappan, Meta Platforms Inc, Menlo Park, California, USA; e-mail: nnachi@meta.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 1557-7392/2025/8-ART211

https://doi.org/10.1145/3722216

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

https://orcid.org/0000-0002-7987-7598
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0003-1137-4297
https://orcid.org/0009-0006-4067-9515
https://orcid.org/0009-0009-4082-2934
https://orcid.org/0009-0003-4103-1196
https://orcid.org/0009-0007-4185-5960
https://orcid.org/0009-0002-7402-7655
https://orcid.org/0009-0001-2519-9867
https://orcid.org/0009-0002-1405-4838
https://orcid.org/0009-0000-7645-1949
https://orcid.org/0009-0000-3478-5350
https://orcid.org/0009-0009-4187-7371
https://orcid.org/0009-0007-1891-7764
https://orcid.org/0009-0007-1891-7764
https://orcid.org/0009-0000-8033-1093
https://orcid.org/0009-0009-4700-9882
https://orcid.org/0009-0001-8545-6335
https://orcid.org/0009-0005-5407-3875
https://orcid.org/0009-0002-1985-8659
https://orcid.org/0009-0002-1985-8659
https://orcid.org/0009-0005-7627-8695
https://orcid.org/0009-0004-3723-9004
https://orcid.org/0000-0003-1358-4124
https://doi.org/10.1145/3722216

211:2 A. Mockus et al.

To operationalize the drivers of outages, we consider the entire network of interdependencies among
different parts of the source code, the engineers that modify the code, code complexity, and the coordination
dependencies and authors’ expertise. Since the code freeze is a balancing act between reducing outages
and allowing software development to proceed unimpeded, the performance of the various approaches to
code un-freeze is evaluated based on the fraction of flagged/gated changes to measure overhead and the
fraction of all outage-causing changes contained within the set of flagged set of changes to measure the ability
of the code un-freeze to delay (or prevent) outages. We found that taking into account the risk posed by
modifying individual files and the properties of the change we could un-freeze 2 and 2.5 times more changes
correspondingly.

The change level model is used by Meta in production. For example, during the winter 2023 code freeze,
we see that only 16% of changes are gated. Although 42% more changes landed (were integrated into the
codebase) compared to the prior year, there was a 52% decrease in outages. This reduction meant less impact
on users and less strain on engineers during the holiday period. The risk model has been enormously effective
at allowing low-risk changes to proceed while gating high-risk changes and reducing outages.

CCS Concepts: « Software and its engineering — Software defect analysis; Software maintenance
tools; Risk management;

Additional Key Words and Phrases: System outages, code freeze, defect prediction

ACM Reference format:

Audris Mockus, Rui Abreu, Peter C. Rigby, David Amsallem, Parveen Bansal, Kaavya Chinniah, Brian Ellis,
Peng Fan, Jun Ge, Bingjie He, Kelly Hirano, Sahil Kumar, Ajay Lingapuram, Andrew Loe, Megh Mehta, Venus
Montes, Maher Saba, Gursharan Singh, Matt Steiner, Weiyan Sun, Siri Uppalapati, and Nachiappan Nagappan.
2025. Leveraging Risk Models to Improve Productivity for Effective Code Un-Freeze at Scale. ACM Trans.
Softw. Eng. Methodol. 34, 7, Article 211 (August 2025), 24 pages.

https://doi.org/10.1145/3722216

1 Introduction

Of the three key objectives of the software development process (shorter lead time, lower effort,
and better quality), the quality aspect is often considered to be the most important. Low quality
may manifest itself in various ways. At Meta, software is primarily used to run various internal and
external services. Cases when the service does not operate or operates incorrectly are considered
to be service outages and are referred to as site events (SEVs). Such quality problems may lead to
user dissatisfaction and are a prime target of the quality improvement efforts at Meta as in many
other companies.

The fundamental challenge in software development quality improvement efforts is the inverse
relationship between the delivery of software changes (referred to as diffs at Meta) that are necessary
for enhancements or fixes to existing problems and outages (SEVs) these changes introduce. More
numerous, especially rapidly made, changes lead to more problems on one hand, but fixes and
enhancements are essential to keep users satisfied. Thus, the need for any software business is to
deliver cutting-edge enhancements without significant deterioration in software reliability. The
simplest (and obvious) solution to avoid outages is to keep the software codebase unchanged.
Unfortunately, this approach conflicts with the need for rapid delivery of new functionality and
new products.

Software is highly non-homogeneous with respect to the chances that a modification will result in
a problem (see, e.g., [28]: “1% of project files are involved in more than 60% of the customer reported
defects”). This phenomenon can be exploited to limit the impact of code freezes on development
not just by applying freezes for a short duration, but also to the most problematic parts of software

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

https://doi.org/10.1145/3722216

Risk Models for Code Un-Freeze at Scale 211:3

or to most problematic tasks. We refer to such selective application of code freeze as “code un-
freeze” to signify that the approach allows a significant portion of changes to land even when
the quality concerns are paramount. Many of the software defects are a result of unanticipated
dependencies or interactions, e.g., [13]. The complicated web of explicit and implicit dependencies
is a hallmark of any nontrivial software product and development team. We, therefore, consider
ways to capture and quantify the structure of software and authoring dependency networks and
use it to identify problematic areas and tasks and segregate from the rest of the software that could
be safely un-frozen.

Much of software quality research is, unfortunately, not tightly integrated into the actual software
development process [19, 45]. To address that and inspired by the participatory action research
(PAR) approach [3, 47], we both investigate practices of code freezes at Meta while actively
participating in their evolution by modifying approaches from existing software engineering
literature to fit Meta’s needs.

1.1 Research Questions (RQs)

Although code freeze (a temporary prevention of non-critical changes to the entire codebase or
to the maintenance branch) is widely used in industry, the practice is not clearly defined in the
research literature. We, therefore, start by investigating how the concept is defined and applied at
Meta (see Section 5).

We then provide answers to the following RQs.

RQ 1. Current Practice: How Does Meta Currently Conduct Code Freezes?

We want to understand how code freeze was and is currently conducted at Meta. To answer this
RQ, we worked with quality engineers and managers responsible for conducting freezes.

Result Summary. We found that code freeze definition and implementation was substantially
different from those found in the research literature. First, Meta does trunk-only development so
branch-specific freezes do not apply. Second, the timing of code freezes is not based on release
maturity but on other factors, such as based on disruptions to developer teams, and reliability.
Third, in Meta’s code-freeze some of the diffs are allowed to land. Fourth, the permission to land
during the code freeze is not based on the type of diff (enhancement vs. fix) but on diff risk and,
even for risky diffs, on the diff gating process. Fifth, to determine the risk each manager from
distinct areas of the codebase designates an area expert to specify the code paths that they deem to
be the most important. Any diff to such files would be either blocked (the so-called “red-zone”) or
gated (“yellow zone”). If their diff is gated, and the engineer still wants to land the diff, they must
provide a rationale and potentially obtain approval from the area expert.

In a historical analysis, when code freeze is applied by restricting diffs to the file paths selected
by experts (ExpertPaths approach), we find that 27.3% of diffs would have been gated and 38% of
SEVs would have been captured (here and below by “would capture” we mean “would have been
predicted as risky”).

RQ 2. FileModel: How Well Does the File Risk Model Gate Diffs with SEVs?

To improve upon the ExpertPaths approach, we first developed a file-level risk model to exploit
the fact that only a small fraction of files are involved in SEVs. Statistical software risk models
have been in use for 40years, e.g., [8, 11, 16, 18, 29-31, 34], so we had a wide selection of options
to choose from. The key aspects essential for practical deployment included the simplicity of the
model and of the predictors to be able to develop, retrain, and deploy it rapidly in a very large
software development organization, the ability to simply explain the resulting risk to software
developers whose diffs are gated, and the ability to easily modify the gating level based on the type
and objectives of the freeze. This led us to choose a logistic regression model with predictors that
capture the complexity of software and work interdependencies, e.g., [6, 29], and properties of the

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:4 A. Mockus et al.

source code, e.g., [31]. The risk for all modified files is calculated and if risk for at least one file is
above a threshold, then the diff is gated.

Result Summary. Had we used the FileModel to gate the same number of diffs as the ExpertPaths
approach, the FileModel would capture 56% of SEVs or double the odds ratio of capturing the
SEV-causing diff in comparison ExpertPaths approach. The most important features (by the term
“feature” we indicate predictor used in the model) are: the number of prior SEVs, whether the code
was part of the core, and the number of lines of code (LOCs) in the file.

RQ 3. DiffModel: How Well Does the Diff Risk Model Gate Diffs with SEVs?

We further tried to improve upon the FileModel by exploiting individual properties of each
diff. The models of the software diff risk have been around for 20 years, e.g., [16, 29, 55]. Instead of
calculating the risk for individual files, we calculate the risk for the entire code change, i.e., diff. We
use the classic features, including prior SEVs and churn, as well as supply chain metrics. Not only
can a diff level model better account for file-level risk, but it can also factor aspects related to the
diff author and reviewers.

Result Summary. Had we used the DiffModel to gate the same number of diffs as the ExpertPaths
approach, the DiffModel would capture 60.8% of SEVs (an odds ratio of 2.5 over ExpertPaths
approach and 1.2 over FileModel). The most important features are the prior SEVs, number of
reviewers, and number of files in the diff.

RQ4. Production: How Well Does the Risk Model Work in Practice?

The first major test of the risk model was in July which saw high traffic levels. The largest
production usage of the risk model occurred over the holiday period of mid-November to the start
of January 2023, where outages can significantly reduce user satisfaction.

Result Summary. Despite record traffic levels in July, the FileModel ensured that no major SEVs
were introduced. In total, 26% of diffs were gated, 8.8% of all diffs (or 33% of gated diffs) were
allowed to land after the developer provided landing rationale. The DiffModel was deployed for
the winter holiday period and only 16% of diffs were gated, 5.7% were allowed to land after the
developer provided landing rationale. When we compared to the prior year, we see a 42% increase
in the number of landed diffs. Instead of seeing a corresponding increase in SEVs, we see a 52%
decrease in the number of SEVs compared to last year. This reduction in SEVs also reduced the
operating cost related to dealing with SEVs by 47% and meant fewer disruptions for engineers
during the holiday period. The risk model has been enormously effective at allowing low-risk diffs
to land while gating high-risk diffs and reducing SEVs.

This article is structured as follows. In Section 5, we review the industrial reports and literature
on code freeze, and describe code un-freeze practices at Meta in Section 4.1. In Section 2.2, we
present the history and state-of-the-art on risk modeling in software engineering. In Section 3.2, we
introduce the features, risk models, and evaluation that we developed for use during code freezes
at Meta. In Sections 4.3 and 4.4, we present the results for our file-based and diff-based risk models,
respectively. In Section 4.5, we discuss how the models were used to do code un-freezes at scale in
production. In Section 6, we discuss threats to validity. In the final two sections, we discuss our
contributions in the context of the literature and present concluding remarks.

2 Background

To motivate our RQs we explain the essential aspects of software development at Meta, present
general code freeze practices reported in the literature, and give a very short overview of the risk
modeling in software engineering and how it can be exploited to identify low risk files or tasks
that could remain unfrozen.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:5

2.1 Background on Software Development at Meta

Meta develops software for both its servers and client devices, including specialized hardware
devices. This approach facilitates swift software updates and provides meticulous control over
versioning and configurations. At Meta, this deployment strategy has cultivated a routine of
frequently “pushing” new code to production. Prior to any push, the code undergoes peer review,
in-house user testing, and comprehensive automated and canary tests. Once deployed, engineers
scrutinize logs to spot potential problems.

At Meta, it is customary for engineers to review each other’s code. This process serves several
functions. Firstly, it motivates the original coder to maintain high coding standards. Secondly, a
reviewing engineer, with a fresh perspective, might detect flaws or propose better solutions. Thirdly,
it promotes the dissemination of coding practices and specific code knowledge throughout the
organization. Meta uses Phabricator! as the cornerstone of its CI system. This platform facilitates
contemporary code reviews, wherein developers submit code changes, that are referred to as diffs
at Meta, and provide feedback on their peers’ changes before they are either integrated into the
codebase or rejected.

Phabricator and version control systems are used as part of the development process. Phabricator
tracks code diffs, author/reviewer actions, and the current state of all diffs. Developers submit their
code for review, creating a patch representing the initial version of the code. Reviewers can suggest
improvements, leading to additional revisions until the diff is either approved and incorporated
into the code base (the diff “lands”), or until the diff is abandoned. A diff is a collection of patches
representing the initial version of a bug fix or enhancement, along with any revisions made during
the diff’s lifecycle.

2.2 Background on Risk Modeling

Software risk modeling literature is based on the empirical fact that the chances of a defect are not
homogeneous over time, code, and tasks. We start with the key aspects of software risk modeling
and describe how it can be applied to the problem of code freezes at Meta.

2.2.1 Risk Prediction Literature. Statistical software risk models have been in use for 40 years,
e.g., [8, 11, 16, 18, 29-31, 34]. Research that predicts the risk of individual changes are more recent,
but still spans over 20years, e.g., [16, 29, 55]. A proper review of this literature would require a
book, and numerous survey papers exist, with some of the latest being [34, 55]. We focus only on
aspects most relevant to our context. This involves the object for which the risk is predicted (source
code file or change), the kind and operationalization of what is considered to be an adverse event,
and the distribution of these adverse events.

The unit for which the risk is predicted could be a time period, a piece of code (such as a file
or a module), or a change/task (i.e., diff). Since methods differ depending on the target unit, to
discriminate between task and file risk prediction, the task risk prediction is often referred to as
“just in time prediction” [16, 29]. The object of this work are models and methods to predict if a
file (or a code change) will be involved in (cause/trigger) a software failure. Much of the literature
is focused on “bug prediction.” Unfortunately, the notion of a bug is typically defined implicitly
(marked as bug in an issue tracking system) and such “bug” changes may constitute most of the
development work (with over 75% of all changes in a project).

A subset of the literature considers only the “bug” changes that are actually affecting end users
or customers of the software product. In this context, only a tiny fraction of changes are related to

Uhttp://phabricator.org.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

http://phabricator.org.

211:6 A. Mockus et al.

customer problems unlike for bug fixes found during regular course of software development. Rare
events are much harder to predict and may require different kinds of models, e.g., [49].

Unfortunately, even these customer-impacting changes typically represent fixes to customer
problems and not the causes/triggers of these problems. To identify the causes, researchers use
heuristics that tag previous changes made on the same files, but the accuracy of such tagging may
be extremely low [7, 32, 36, 40, 52] and that low accuracy has enormous impact downstream on
just-in-time prediction [10]. We are aware of only a few (one) prior publications where changes
were explicitly tagged by the development team as causing SEVs [29].

In our context the outcome measures involve not just the fraction of SEV-causing diffs (changes)
identified, but also the fraction of diffs that were gated to account for the process overhead. This
attempt to take into account the overhead of flagging something as risky is somewhat analogous
to so-called effort-aware models, e.g., [15], where effort is spent on remediating units incorrectly
flagged as risky. What, perhaps, is unique in our study is that the code-freeze process can be easily
controlled by deciding what fraction of diffs should be gated. The role of the prediction models is
then simply to maximize recall (fraction of SEV-causing diffs) given that specified level of gating.
Conceptually it is important to distinguish failures (the manifestation of a bug/fault) from faults
(bugs). The same fault may cause many different failures while a single failure may be the result of
a confluence of factors, including multiple faults. Outages are typically a result of failures caused by
defects in the software used to run the service. At Meta, SEV resolution process requires determining
and recording the cause of the SEV. For some SEVs the causes are not rooted in software changes
but represent environmental changes, for example, hardware or network problems, unexpected
level of traffic, or other factors. The process to handle each SEV involves, among other things,
identifying its trigger. While some of the triggers are not software related, in many cases triggers
are identified as software diffs. Due to the many-to-many relationship between faults and failures,
more than one diff may be identified as a trigger and the same diff may trigger multiple SEVs. These
extremely valuable data linking SEVs to the diffs that caused them were then used to create models
of file and diff risk. While such data may not exist in all companies, we hope that the value it could
provide to balance quality and productivity, would encourage more companies to collect such data.

2.2.2 Precursors of Risk. While the risk prediction literature is focused on how to use properties
of files or changes to predict the associated risk score, it is worth considering more generally
why certain aspects of software or a change are affecting the chances of a failure. To characterize
this complexity, it is worth observing that each software change is produced by a developer
who does not have a perfect understanding of what behavior the change should implement in
conjunction to their imperfect understanding of how the change might affect all different parts
and aspects of a large software system. In other words, failures and SEVs are often caused by the
inability to fully comprehend all possible ramifications the change brings not only to a particular
piece of code but also to all parts of the code it may be related to. An elegant framework [13]
illustrates such scenarios via the concept of constraint violation. Specifically, problems arise when
the new constraints implemented by a change are not perfectly aligned with the constraints
imposed by previous changes or when the systems environment violates the constraints of the
existing implementation. The complexity of the software supply chain with deep and complex
interdependencies makes it harder to know and satisfy all the explicit and implicit constraints,
hence we postulate the first cause of software failures to be based on software interdependencies.
Prior work defined three types of software supply chain [26, 27]: dependencies, code copying,
and knowledge transfer. The dependencies are typically represented by the call graph where a
function that is invoked is implemented in another package or a file. Co-changes (files changed in a
single diff) are often used to represent logical dependencies. We do not use file copying as it is not

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:7

necessary at Meta due to the megarepo (a single repository) all Meta projects use and, therefore,
can reuse each other’s code without copying. The knowledge transfer is typically represented by
the same person working on different parts of the code.

Furthermore, in a large system, many developers are working in parallel, so it is not unusual
for them to have a slightly different understanding of the system. In case their mutual decisions
violate certain constraints (as discussed above), the violation may manifest itself in unexpected
program behavior or a fault leading to an SEV. In short, software development may be thought of
as a complex network of software dependencies and knowledge transfer (the so-called software
supply chains [26]), where the complexity of the network may lead to software problems. Thus,
coordination problems that may be partially expressed via software authorship network (and its
interactions with software dependency network) is our second postulated cause of failures.

Finally, since the earliest days of assessing software quality it was recognized that the complexity
of the particular piece of software may affect the chances of failure. While numerous metrics were
proposed to measure file and class complexity, the simple measures such as the lines of code in a
file or a function or cyclomatic complexity, tend to suffice, e.g., [44].

The structure of the network introduces unevenness in terms of which parts of the code and
which changes are responsible for most of the faults. For example, it was reported that 3% of
the code is responsible for over 90% of customer-facing faults in switching software [28]. The
state-of-the-art code inspection, code analysis, and testing practices are critical for [12], but they
are not sufficient to achieve optimal results and require significant effort. This unevenness can,
therefore, be exploited to focus quality improvement resources on the most problematic areas.
In fact, many of the measures used to predict failures in the past are measuring the properties of
the network, though not always explicitly. For example, the number of files modified by a diff,
the number of past diffs to a file are, in fact, degree centrality of the co-change and authorship
network correspondingly. Some work explicitly considers network measures explicitly, for example
clustering coefficient used in [6], and social networks of authors [4, 43, 48, 51, 53, 56].

3 Methodology and Data

In this section, we discuss the method we used to understand the current state of code freezes
at Meta and ways to adapt and deploy relevant research results into practice. We then describe
statistical modeling methodology and the data we used to model risk, and the outcome measures to
evaluate how effective the models are.

3.1 Discovering the Context

Not all software quality research stems from or is tightly integrated into the actual software
development process. Inspired by the PAR approach [3, 47], we both investigate practices of code
freezes at Meta while actively participating in their evolution by adapting approaches from existing
software engineering literature to the specific organizational needs at Meta. To support overall
organizational priorities at the time, the research team was engaged by the units tasked with
planning code freezes. Initial meetings were devoted to better understand the history and current
code-freeze practices as well as understand the perception of the remaining problems. Armed with
this understanding the research teams suggested potential short- and longer-term approaches to
address them that were then evaluated and prioritized by both teams and their upper management.
Such a close alignment with all key stakeholders: software developers, management team, and
quality engineers have been cited as critical to success in various contexts [33, 35, 46, 54]. The
second important aspect for the success of this initiative was appropriate timing. The problem
was considered a priority, the solutions implemented at the time were lacking (e.g., no diff- or
file-specific risk, low recall), and the enhancements proposed by research team had undergone

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:8 A. Mockus et al.

an evaluation using historic data that showed significant promise [46]. A third factor that likely
contributed to success was the significant effort spent by the research team to adjust and reinterpret
existing research results for the specific needs of the organization [33] (e.g., the lack of maintenance
branches, specifics of the measurement process). The fourth success factor was rapid prototyping
of potential approaches, including evaluation of their performance, so that the management and
development teams could rapidly move in the most promising direction [21]. For example, back-
testing various strategies under realistic scenarios and providing direct comparisons between
existing and proposed approaches. Fifth, the introduction of new techniques was designed to be
evolutionary and iterative, based on the existing set of processes and tools with only necessary
changes at each iteration. For example, we started with a simpler task of file-specific risk using
preexisting metrics and gradually added more sophisticated metrics and moved to diff-level risk.
Sixth, the success of the initial improvements generated the trust and motivation to rapidly deploy
further improvements [46]. Seventh, the researchers involved in the effort have, over several years,
built good understanding of organizations’ general needs and the reputation for providing ideas
and tools that lead to practical improvements in other contexts.

In short, the understanding of the code freeze needs was built by discussion with the management
team, reliability engineers, and developers spearheading quality improvement efforts. Based on
these interactions and retrospectives of previous code freeze efforts a detailed understanding of
aims, results, and shortcomings of the existing code freezes was obtained. It was then used to
create the three-dimensional code freeze framework and suggested ideas on how best to move
forward. Since the effort was primarily driven by the engineering and quality teams it resulted in
an extremely rapid transformation of research prototypes into the production tool chains.

3.2 Risk Modeling at Meta

As noted above, the key aspects essential for practical deployment included the simplicity of the
model and of the predictors to be able to develop, retrain, and deploy it rapidly in a very large
software development organization, the ability to simply explain the resulting risk to software
developers whose diffs are gated, the ability to easily change the gating level based on the type
and objectives of the freeze. This led us to choose a logistic regression model with predictors that
capture the complexity of software and work interdependencies, e.g., [4, 6, 29], and properties of
the source code, e.g., [31].

For an industry deployment, all measures need to be calculated in near real-time (as diff is landing)
and, for at least some of them, easily understood by engineers as causes of risk. We, therefore, chose
to rely on a very small group of measures that represent the complexity of code interdependences,
coordination complexities, code complexity, and the expertise of authors involved in making these
diffs. As discussed in Section 6, many alternative models had similar performance. Strikingly, all
models required very few predictors to reach that performance.

3.3 Data Collection

While the precise features are described in the next section, here we explain data collection
procedure Meta for SEV models. We collect data from code measurement systems, such as lines
of code, cyclomatic complexity, line test coverage, and code ownership, including whether the
file or the owner were specially designated (as described in the next section). A system to track
every SEV was used company-wide to determine the root cause of every outage. Relevant for our
purposes, it recorded a SEV trigger, which in case of software outages, was a diff or a set of diffs.
Due to strong focus on customer experience, the accuracy of SEV data was considered a priority.
We used Phabricator to obtain the remaining measures, such as diff creation and landing times,
affected files, author, reviewers, and test plans. Hence, we linked SEV and diff data via diffs that

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:9

g 2->@—p

aside.cpp Diff001 Index.cpp
L Ja * | - F) * Yy
nid Yad e
Diff002 hash.cpp DIff003 query.cop Diff000

Fig. 1. Software supply network. Blue lines are author-to-diff, black diff-to-file, and green function call
(file-to-file) links. File Aside.cpp is in the periphery with only a single author and co-changed with a single
file, while index.cpp is more central with two authors, three other files either calling functions in it or being
called from it, and co-changed with two files.

were triggers to SEVs and code metrics via file names modified by diffs and diff time (code metrics
evolve over time as files are changed). From the supply chain network perspective, we obtained all
the nodes represented by files, diffs, and authors from Phabricator. As shown in Figure 1 the links
were co-changes (files modified by each diff), authorship (file-to-author via authored diffs), and call
graph aggregated to file level. Since the call graph edges represent links from function invocation
to function definition, there may be several functions defined in, for example, file query.cpp that
are invoked from file index.cpp. By aggregation to file level, we mean that only one link is created
from index.cpp to query.cpp if there is at least one call from the source code in file index.cpp to a
function implemented in file query.cpp. The network was dynamic as each diff has time attributes.

Degree centrality is the simplest network measure, such as the number of reviewers or files for a
diff. The main issue with the measure is that it does not take into account the importance of the
nodes these edges lead to or from. We used Katz centrality [17] to take into account not just the
number of other nodes (degree centrality), but also the importance of these nodes. We calculate
centrality using the complete co-change, authorship, and call graph links to ensure the technical
structure transfers to and is affected by the social structure. For example, many files may depend
on a specific file F. Any developer who modifies F inherits some of that centrality by being linked
to the central node.

3.4 Model Features

At a high level, we went through the following procedure for model selection (a similar procedure
was used on a regular basis to update the production model as well). First, for each dimension we
selected approximately five high-level measures previously described in research literature and
then we investigated correlations among operationalizations of all resulting measures. Software
engineering measures tend to be highly correlated, e.g., [22, 23], but models with highly correlated
measures are harder to interpret, have unstable estimated coefficients, and poor predictive power,
e.g., [9]. For our purpose, we evaluated models by fitting them on a year of historic data and
evaluating based on their performance on (non-overlapping) 6 months of current data. To prevent
hard-to-explain models, we selected at least one measure from each area (complexity, interdepen-
dencies, coordination, and experience) that was easiest to interpret (developers want to know why
their diff is gated) and simple to calculate (the risk calculation had to be done in real time during
diff landing). We also included all remaining measures that had a lower than 0.7 correlation with

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:10 A. Mockus et al.

Table 1. Features for FileModel

Measure Description Calculation
had_sev(f,t) Has the file been modified by an SEV-causing diff in the past? 1 & 3d:df Ndsex Ndr < t; else0
past_dif fs(f,t) Number of times the file has been changed in the past [{d:dr Ad; < t}]
is_core(f) True if the file belongs to an org that provides code with critical
online services to most other orgs
test_cog(f,t) Percent of lines covered in unit tests for file f at time ¢
loc(f,t) Number of lines of code in the file f at time ¢

For rapid deployment only the most basic easy-to-compute features were included. f: file, dy: indicator that diff d
modifies f, dseo: indicator that diff d caused a sev, d;: diff d landing time . When diff d lands, maximum risk over the
modified files is calculated: r(d) = maX{f,df;.r(f, d).

this initial set. While initially we considered only approximately 20 candidate measures, eventually
it grew to almost 100, though only 15 or so were used at a time for the best-performing production
model. While all of the measures were related to gauging complexity of one sort or another, we
also included a more direct measure of risk: whether or not any of the files modified by the diff
have been previously modified by SEV-causing diffs. Finally, we fitted a logistic regression model
on the training dataset. Measures that did not significantly contribute to explaining the variance
(p-value < .1 or the difference in deviance under 2.6 for the likelihood ratio test if the addition
increases likelihood significantly) were excluded from the model. Resulting models were then used
to predict SEV-triggering diffs on the test datasets.

The measures used in FileModel and DiffModel are shown in Tables 1 and 2, respectively. The
FileModel contains a limited set of features that could be pre-calculated and immediately used
in production. The DiffModel, being the second iteration of the deployment, could contain more
advanced features, such as the centrality of the author, that are more difficult to compute and are
only gradually being rolled out in production.

More central file nodes would point to files that are often called or have methods called from
many other files, have many authors, are frequently co-changed, and are connected to other files
that are central. It thus captures almost all of the dimensions known to be associated with faults.
We do not collapse the author-commit-file multi-graph into author-only or file-only networks as
was commonly done previously [4, 6, 43, 48, 51, 53, 56].

The number of files in a diff (degree centrality) serves as a proxy of coordination requirements
previously found to increase risk, e.g., [29]. The entirely new set of files modified by the diff makes
it unlikely that the functionality implemented there would be immediately used (and hence cause a
SEV). The number of reviewers may indicate that a diff requires expertise from several domains.
It was previously found that author expertise as measured via past diffs to the same area of the
codebase reduces risk, e.g., [29].

The size of the file is a proxy of complexity and larger files contain more code, so even if the
SEV would be equally likely to affect any particular line in the codebase, large files would more
likely contain it. The amount of code changed in a diff should increase risk. Cyclomatic complexity
takes into account not just the size of the file but also the branching structure. Files implementing
complex logic may be more risky.

The maximum of the test coverage represents the fraction of lines covered during test execution.
Intuitively, more testing should capture faults before they become SEVs, the observational nature
of this study suggests that, quite likely, files with (or likely to have) SEVs get more extensive test
suites (and correspondingly larger test plans).

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:11

Table 2. Features for DiffModel Include Advanced Features at the Diff Level That Are Being
Considered for Use in Production

Category Measure Description Calculation
Defects had_sev(d) True if any of the files in the diff max{f.d,) had_sev(f,d;)
have been modified by a
SEV-causing diff in the past
Interdependencies call_centrality(f,t) The maximum Katz call graph max{f.d,) cent(f,d;)
centrality of the files in the diff
num_of _files The number of files modified by [{f :dr}
the diff
dif f_only_creates_files True if all of the files modified by [{f : dr}|
the diff are created by the diff
Coordination num_reviewers(d) The number of reviewers for the |{r:d,}|
diff
author_centrality(d) Katz centrality of the diff author cent(a,d;)
based on co-change, authorship,
and call graph links
Expertise sum_author_churn_files(d) Author expertise measured by the |cup{f:df) {D:D; <t ADgADg}|
number of diffs to the files
modified by the diff in the past
File complexity churn(d) Sum of the lines of code in Z{f;df) LOC(f,t)
modified files
complexity Maximum cyclomatic complexity max{f.d,) CC(f,t)
over modified files
Testing test_plan_length(d) Length of the test plan for diff d
max_test_coverage(d) Maximum percent of lines max{f.q.) test_cog(f,d;)
covered in unit tests)
diff duration total_dif f_time(d) The elapsed time from diff d
creation until landing d;
Codebase all_recent_files(d) Whether all modified files min{f,D;deDf} D; >d;

{f : df} were created recently
(within 3 months)

is_core(d) True if any of the modified files
{f : dr} belong to an org that
provides code with critical online
services to most other orgs

The measures are computed for each diff separately as they were at the time diff landed. The notation is the same as
in Table 1. In addition, cent(f,t): centrality of file f at time t, CC(f,t), LOC(f,t): cyclomatic complexity and
lines of code of file f at time ¢, d and D, are diffs, a: author, r: reviewer, d,, d,: indicators that a authored and
r reviewed d.

Diffs that take longer may indicate they are more difficult, hence more risky. We also add
predictors for recently created files (assuming lower risk) and the type of functionality involved.
Some of the core and business-critical services are deployed in many products: we assume that
critical codebase could be identified by code ownership.

For files and diffs our response is a Boolean: whether or not a file will be modified by a SEV-
causing diff in the former case and whether or not a diff will trigger a SEV in the second case.
Logistic regression models are commonly used for such data. In addition to being simple to fit
and extremely simple to predict and explain (via an explicit formula), logistic regression produces
predicted probability of an SEV that could be easily have a threshold (see Section 3.5) to achieve
various levels of gating without refitting the model. Furthermore, logistic regression is commonly
used in risk prediction models. We represent the models using R syntax. All continuous variables
are log transformed using the log1p function because they have a skewed distribution. We add one
to ensure that there are no zero values in the log transformation. We do not show log1p to make
the model easier to read. In practice, some of the data may be missing or incorrect (e.g., positive

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:12 A. Mockus et al.

quantities have a negative value). We correct such instances and impute missing values to avoid
errors in the production environment.
The FileModel has the following form in R syntax:

FileRisk ~ had_sev + past_diffs + is_core + test_coverage + loc.
The DiffModel has the following form in R syntax:

DiffRisk ~ had_sev + call_centrality + num_of_files + diff_only_creates_files + num_reviewers
+ author_centrality + sum_author_churn_files + churn + complexity

+ test_plan_length + max_test_coverage + total_diff_time + all_recent_files + is_core.

3.5 Thresholds and Outcome Measures

Unlike PathModel, FileModel allows for adjusting the number of DiffsGated for a particular
type of the code freeze. The actual decisions on the exact timing and the threshold to be used in each
code freeze concern specific business or engineering needs and are beyond the scope of this study.
The documents planning the code freezes were worked out based on discussions among quality
engineers, software engineers, and engineering management. The key part of the discussion was
the quantitative evaluation of the tradeoffs between the fraction of DiffsGated and the percentage
of SEVs that are captured by the model, i.e., CapturedSEVs. The thresholds varied because the
objectives of each code freeze were different.

As noted above, the dual goals of the code freeze are to reduce the number of SEVs, i.e., severe
faults and minimize the disruption to the development team. Once the threshold is selected, the
model flags (gates) diffs exceeding this threshold risk. The fraction of all diffs that are gated and the
fraction of DiffsGated that actually lead to SEVSs, i.e., CapturedSEVs are, thus, the two primary
outcomes used to compare models and to decide upon the threshold to be used in each code freeze.
To calculate actual probabilities to be used as thresholds, a model was applied on 3-6 months of
data producing the probability for each diff. The probability value p, for which a desired (e.g.,
20%) fraction of diffs in this set would have greater risk (e.g., p. = percentileyop) was then used to
configure the gating tool.

When the model is released in production, engineers are allowed to select a rationale for why
a diff that was marked as risky should still be landed. We report the number of diffs that have a
rationale and are landed.

4 Results
4.1 RQ 1. Current Practice

Our first research question was to better understand existing software development practices related
to the code freeze, or:
How does Meta Currently Conduct Code Freezes?

4.2 Types of Code Freezes

To understand how code freezes are conducted at Meta we follow methodology described in
Section 3.1. We found that each code freeze strategy aimed to reach a meaningful balance between
quality and productivity. The first approach restricts diffs during certain periods, such as before the
release, when technical support is hard to come by, or when usage is high. The second approach
restricts diffs to certain parts of the codebase. This is motivated by the fact that modifications to a
very small fraction of the codebase are responsible for almost all SEVs. The last approach restricts
landing of certain diffs that are deemed to be risky.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:13

“Red Zone” Freezes. Since Meta conducts trunk-only development and there is only one “branch,’
so code freezes can only be short-lived. The initial approach avoided all diffs during certain high
risk, high usage “red zone” periods.

Tooling changes were then introduced to automatically prevent landing of all diffs during “red
zone” unless an exception was obtained. This undifferentiated approach was objected to by the en-
gineers who could not land diffs that would not cause SEVs for end-users, e.g., diffs to internal tools.

Timing is arguably the most essential part of the code freeze as an infinite freeze would inhibit
the ability to evolve the software permanently. Traditional code freezes affect only maintenance
branches and, therefore, do not disrupt trunk development. At Meta, as in many other software
companies that offer online services, releases are very frequent, and, because of that, branches for
maintenance mode (where code freezes are typically applied), are not used. Instead, the code freeze
is applied for two primary reasons. First, it is applied during special events when system SEVs
would be especially detrimental to user experience and Meta’s reputation. These events typically
correspond with holidays or other special events of that kind. Second, freezes are applied when SEV
would cause unwanted disruptions to the engineering team, such as during weekends or holidays.
Weekend freezes also tend to cause much less disruption to the development process as diff landing
activity is much lower. Generally, a much higher percentage of diffs are gated for the freezes of the
first type than for the freezes of the second type. In addition to the two primary freeze types, other
freezes are also conducted. For example, there may be specific occasions to support a one-off event.
In these cases, only functionality that is relevant to that event is frozen, thus limiting the overall
disruption caused by the freeze.

The next three approaches are discussed in more detail below and involve expert-based selection
of risky files (ExpertPaths), model-based selection of risky files (FileModel), and, finally, model-
based selection of risky diffs (DiffModel). The three approaches go beyond simply timing code
freeze and into specific strategies to enforce the code freeze by where development occurs (location)
and even by individual tasks (diffs).

Location-Based Code Freeze. The first, ExpertPaths approach, relies on experts being able to
correctly identify a set of risky folders that, diffs modifying any file within these would tend to be
more risky. Furthermore, not all files within a folder have the same risk. With a very large codebase
it would be too cumbersome (and likely ineffective) for experts to assess the risk of each individual
file. Finally, with ExpertPaths approach it is not possible to easily control what fraction of SEV-
causing-diffs end up being flagged versus what fraction of all diffs are flagged. These shortcomings
can be addressed by employing some of the well-studied defect prediction models described in
Section 2.2. Historic data on past SEVs are particularly well-suited for risk models that, unlike
experts, can be used to identify the most risky files, not just the most risky paths. Using a suitable
risk model it is also possible to easily adjust risk thresholds used to gate the diffs. In summary, the
resulting FileModel represents a more elaborate and flexible version of location-based code freeze.

Diff-Based Code Freeze. The time- and location-based code freeze can reduce code freeze ineffi-
ciencies substantially, but further improvements may be possible if we also take into account the
properties of individual diffs. As described in Section 2.2, the so-called “just-in-time bug prediction”
literature models risk of individual code diffs. The advantage of a diff-based model is that it can
take into account the properties of individual diffs. For example, the risk of a diff that modifies only
comments even in the most risky file is low, but location-based models would not be able to predict
that. On the other hand, a diff modifying numerous, even if not risky, files, might pose higher risk.

As the approach was deployed, we first implemented a file-risk approach based on modeling
the probability that a file will be involved in a diff that causes an SEV. If a diff modifies a file that
exceeds threshold risk, the diff is gated. The gating percentage can be determined by observing the
quantile of risks for past diffs and used as a threshold value for the code freeze.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:14 A. Mockus et al.

Table 3. The FileModel Logistic Regression Predicting If a File Will be Part of an
SEV-Causing Diff

Measure Direction Deviance z value Pr(>|z|)
(Intercept) - NA -277 0.00
had_sev + 60,000 238 0.00
past_diffs + 51 8 0.00
is_core + 15,000 111 0.00
test_coverage - 650 =25 0.00
loc + 3,200 57 0.00

The model explains 31% of the deviance. The “Deviance” shows likelihood ratio of including
the predictor in the model.

In summary, the traditional code freeze prevents changes to the codebase for a short period of
time before a release. At Meta we find that code freezes are done in several different ways.

The objective of code freezes was to minimize disruption of development while ensuring the
best user experience. Historically, they were implemented as restrictions on code integration
based on the perceived risk and when the files were modified.

4.2.1 Code Freezes by ExpertPaths. One way to determine the risk of a diff is to ask a domain
expert. This is, unfortunately, impractical due to the need to assess large numbers of diffs as they
land. An alternative is to ask experts to assess the risk of changing each file. While the number of
files is lower than the number of diffs, it is still formidable. As described in Section 4.2, a compromise
approach was used at Meta, where the experts in each domain were asked to specify a range of
paths (typically using regular expressions) where, according to their perception, the diffs are most
likely to lead to a SEV, i.e., the location-based dimension of code freezes.

In practice each manager from distinct areas of the codebase designates a developer who is an
area expert to specify the code paths that they deem to be the most important. Any diff to such files
would be either blocked (the so-called “red-zone”) or gated (“yellow zone”). If their diff is gated,
and the engineer still wants to land the diff, they must provide a rationale and potentially obtain
an approval from the area expert. To assess the effectiveness of this approach and to compare it to
model-based approaches we conducted a historical analysis to understand how many diffs touch
these file paths and how many of these gated diffs would have led to SEVs. We found the following:

In a historical analysis, when code freeze is applied by restricting diffs to the file paths
selected by experts (ExpertPaths approach), we find that 27.3% of diffs would have been
gated and 38% of SEVs would have been captured.

4.3 RQ 2. File Risk Model
How Well Does the File Risk Model Gate Diffs with SEVs?

Instead of selecting files based on expert opinion, we use past diff history to identify if certain
files are more likely to be modified by SEV-causing diffs. The features for the file risk model have
been described in Sections 2.2.2 and 3.4. The results of a logistic regression predicting if a file will
be modified by a SEV-causing diff are shown in Table 3.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:15

S 4)
- —— FileModel .-
— — DiffModel P
o _| .-
©
el
<
2
Q.
8 g
» ©
>
W
»n
k3
)
o
g ¥ o ExpertPaths
S
jo
a
o
o
o

T T T T T
0 20 40 60 80

Percentage of Gated Diffs

Fig. 2. Percentage of diffs gated vs. the number of SEVs that were captured by FileModel and DiffModel.

The correlations among predictors were especially high at the file level, hence we needed only
a few predictors to get a good model with 31% of the deviance explained. Table 3 shows that the
two most important predictors are whether the file was previously modified by a SEV-causing
diff and if the file was a part of the core functionality. Cyclomatic complexity had 0.96 Spearman
correlation with loc, hence it is not included in the model. The remaining predictors have an intuitive
explanation: risk increases for larger files with more past diffs and decreases with test coverage. In
fact, SEV-causing diffs modify relatively few files, similar to other industry reports [28].

Had we used the FileModel to gate the same number of diffs as the ExpertPaths approach,
the FileModel would capture 56% of SEVs or more than double the odds ratio of capturing
SEVs than ExpertPaths approach. The most important features are the number of prior
SEVs, whether the code was part of the core, and the number of LOCs in the file.

4.4 RQ 3. Diff Risk Model

How Well Does the Diff Risk Model Gate Differ with SEVs?

Using the DiffModel developed in Section 3.2, we conducted a historical analysis, given a
threshold for the number of DiffsGated, how many SEVs would have been captured by the model,
CapturedSEVs. Figure 2 plots the effectiveness of the model. The dot represents the path-expert rules
which gates 27.3% of diffs and captures 38.5% of SEVs compared to 56.0% and 60.8% for FileModel
and DiffModel, respectively. The DiffModel consistently outperforms the FileModel after 20% of
diffs are gated. We see that once DiffsDelayed is above 20%, the DiffModel is always more effec-
tive than the FileModel. We also see that it far outperforms the ExpertPaths. Because most of the
SEVs are associated with only a tiny fraction of files, FileModel is surprisingly good and performs
comparably or better than the DiffModel for up to 20% of DiffsGated. Only once the gating level
increases, DiffModel shows the advantage of taking properties of the code diff into account.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:16 A. Mockus et al.

Table 4. The DiffModel Predicting the Chances That a Diff Will Cause an SEV

Category Measure Direction Deviance zvalue Pr(>|z|)
Intercept - NA -19.01 0.00
Defects had_sev + 488 17.14 0.00
Interdependencies call_centrality - 4 —-0.37 0.71
num_of _files + 24 5.17 0.00
diff_only_creates_files - 4 —1.80 0.07
Coordination num_reviewers + 18 2.87 0.00
author_centrality - 5 -1.78 0.08
Expertise sum_author_churn_files - 4 —0.99 0.32
File complexity churn + 80 8.52 0.00
complexity + 4 0.52 0.61
Testing test_plan_length - 3 —6.06 0.00
max_test_coverage + 29 4.80 0.00
diff duration total_diff time + 10 3.06 0.00
Codebase all_recent files - 17 —4.46 0.00
is_core + 91 9.39 0.00

The “Deviance” column shows likelihood ratio of including the predictor in the model.

Table 4 shows the most important features. We see that the two most important predictor (similar
to the file-level model) are an indicator of the diff modifying at least one file previously involved in
a SEV (has_prior_sev) and an indicator of whether the diff modifies core functionality (is_core)
closely followed by the total number of lines changed in the diff, i.e., churn. All three increase the
risk as expected. The secondary by importance group includes new code represented by entirely
new or recent files (both decreasing risk as expected), the number of files modified by the diff,
maximum file complexity, and total time needed to implement the diff (with all three increasing
the risk). Author centrality and prior diffs on the modified files (both proxies of expertise) and the
test plan length all decrease the risk as expected. The two apparent surprises include maximum
test coverage and file call centrality that, unexpectedly, decrease the risk.

We cannot stress sufficiently that the risk models in software engineering are predominantly based
on the observational data, since controlled experiments are rarely conducted in software quality
domain where a serious SEV may be prohibitively expensive. The key problem with observational
data is that of latent variables that cannot be directly observed but that both cause SEVs and affect
other metrics, such as code coverage. Experienced engineers typically have an intuition about
the risk of software components or diffs and try to reduce the risk via inspections, testing, and
other quality improvement approaches. As a result, problematic areas of the code and diffs may
have much higher test coverage and number of reviewers, but still be more likely to have an SEV
despite that extra scrutiny: after all, neither reviews nor testing can catch all the problems. The
model, without the measure of this developer intuition, simply associates more quality assurance
with high SEV risk. Specialized causal analysis techniques may help identify the presence of such
unobserved predictors, e.g., [2], but they are quite cumbersome to deploy in practice. In practice, it
is extremely difficult to explain the implications of observational data, so we cannot deploy the
model that appears to tell the developers to reduce reviews or testing to reduce the risk of diffs.
While the full description of the approach we took to solve the actionability problem is beyond the
scope of this article, the key point is that given high correlations among predictors we can pick
different subsets of predictors without significantly affecting model prediction performance. The

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:17

model that implies meaningful quality improvement action and has good performance is eventually
deployed in practice.

Discussing practical matters of using the model is important to note that displaying the risk is
most useful in advance to diff landing so that the engineer can anticipate if they will be able to
land it once the diff is complete. This puts additional constraints on the model. For example, the
total_diff_time keeps changing, increasing the risk during the lifetime of a diff, hence it cannot
be used in the model. Furthermore, as more reviewers join in, risk keeps (counter-intuitively)
increasing. To address these problems, we can estimate the expected value for each predictor that
changes during the diff lifetime and use it (instead of the actual value) to minimize distraction
caused by constantly changing risk scores.

Had we used the DiffModel to gate the same number of diffs as the ExpertPaths ap-
proach, the DiffModel would capture 60.8% of SEVs, or odds ratio greater than 2.5 than
ExpertPaths approach and greater than 1.2 than the FileModel. The most important
features are the prior SEVs, number of reviewers, and number of files in the diff.

4.5 RQ4. Production

How Well Does the Risk Model Work in Practice?

We present the results from our July deployment. While the risk model had been used to reduce
the risk of diffs on the weekends, the July deployment window was the first major test of the
model in production. At this time, the FileModel was being used to determine which diffs need to
be gated. We report the results for the July 2023 window in this article. Over this 3-day period,
74% of diffs landed without any interruptions, 26% of risky diffs moved into the gated flow, 8.8%
landed with pre-approved exception reasons, 1.0% were escalated for approval, and 0.28% had their
escalation approved. After landing exceptions, this means that only 17% of diffs were delayed until
after the July deployment window, i.e., a maximum “freeze” period of 3 days. Despite exceeding
traffic records at Meta, we did not experience any SEVs.

The largest production use of the risk model was during the winter holiday period that begins in
mid-November and ends in January with multiple intervals of code freeze. The DiffModel is now
in use and only 16% of diffs were gated, 5.7% were allowed to land after the developer provided
landing rationale. When we compare to the prior year’s winter code freeze, we see a 42% increase
in the number of landed diffs. Instead of seeing a corresponding increase in SEVs, we see a 52%
decrease in the number of SEVs compared to last year. This reduction in SEVs also reduced the
operating cost related to dealing with SEVs by 47%, and meant fewer disruptions for engineers
during the holiday period. Risk modeling has been enormously successful and its use continues to
expand at Meta.

~ a

The first major test of the risk model was the July 2023 deployment window. Despite record
traffic levels, the FileModel ensured that no major SEVs were introduced. In total, 26%
of diffs were gated, and 8.8% were allowed to land after the developer provided landing
rationale. The DiffModel’s first major production usage was during the winter code freeze.
Compared to the prior year, despite 42% more diffs landed, there was a reduction in SEVs of
52%. The risk model has been enormously effective at allowing low risk diffs to land while
gating high risk diffs and reducing SEVs.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:18 A. Mockus et al.

5 Discussion

We start from a historic perspective and continue with implications for the current development
process.

5.1 History of Code Freezes

Software engineering literature does not explicitly and precisely define code freeze. For example,
“only obvious bug-fixes to existing functionality will be applied” [50], “during code-freeze the
release engineer is vested with the authority to reject all changes other than bugfixes” [14]. We
found a lone explicit definition of code freeze: “Feature freeze is a phase during release stabilization
when enhancements are no longer added to the release and only critical defects can be fixed in
a separate release branch, while new release development can continue in the trunk. 2) Code freeze
is a phase during release stabilization when no diffs are done to the software and a release artifact
is only tested” [20].

If we look at software development practice historically, the most common approach to focus
software quality improvement was by designating periods of time during which extensive testing
is conducted and no changes or only the critical fixes were allowed (even before [8] version control
systems allowed separating codebase into development and maintenance branches). The reductions
in or elimination of fixes and enhancements were used to stabilize the codebase before software
releases were delivered to customers [38]. A common term used for such activities was “code freeze””
In many domains, software releases used to be rare events with up to a multiyear gap between
major releases. The released binaries, whether for shrink-wrap, server, or embedded software, were
then delivered to the customers via installation media (tapes/CDs/USBs) or via physical devices
running that embedded software. High quality was paramount as the updates were difficult to
deliver, or extremely expensive (e.g., shipping a large-screen TV back to the vendor for repairs), or
not possible. During code freezes, landing of all but the most important bug-fixing diffs would be
prohibited resulting in a stable code base that would then be extensively tested, including via the
long-running stability, availability, or stress tests.

The evolution of computer performance, version control systems, network deployment, alpha and
beta testing, and other advances made it possible not only to maintain different versions of software
(trunk, and maintenance branches), but also to release after each change (continuous integration)
even for the largest products. Linux was one of the first projects to “release early and often” [39] pro-
viding developers with a 2-week window to request change to be merged and then a stabilization pe-
riod where release candidates were created for testing by the community. The “code freeze” or stabi-
lization period lasted on average 62 days [38]. Many projects use multiple stabilization branches with
varying degrees of code freeze. For example, Chrome had development, beta, and stable branches.
At 6-week intervals, the code on development would go to beta, beta would go to stable, and stable
would be released [38]. This staggered branch strategy is very common across the industry [1].

Notably, all mentions of code freeze appear to be related to individual branches of the software,
with maintenance branches getting only critical updates, and alpha/beta branches getting only
bug fixes, and so on, with the development branches allowing all changes. Meta primarily does
trunk-only development with developers integrating their own diffs into trunk. With continuous in-
tegration, diffs are immediately integrated into a master branch and tested, thus becoming available
for delivery to the end user. In the case of Meta, the scale of diffs was so large, that instead of releasing
each diff, the diffs were batched and gradually rolled out three times per day [41]. The move towards
continuous integration and delivery has been described at Meta [41] and Ericsson [20] among others.

As Rossi [41] noted that as a project and company scale, it becomes impossible for a team of
release engineers to determine which features are ready for production. The next evolution of
Meta’s practices pushed this responsibility back to the engineers to decide which features were

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:19

ready for production. An extensive infrastructure allowed for diffs that saw problems in production
to be toggled off reducing the impact of bad code diffs [37].

5.2 Code-Freeze Considerations

As we investigated plans and retrospectives of past code freeze efforts at Meta and participated in
creating and evaluating new approaches, several additional considerations that were not initially
obvious stood out.

First, the primary aims of the code freeze varied substantially among organizations and among
different occasions when code freezes were implemented. This points to the need to tailor the
code freeze approach to a particular context. While, for example, high usage events require focus
on preventing landing of any risky diffs, the freezes done during weekends are mostly to avoid
disturbing engineers with emergency requests to handle the SEV. SEVs for internal tools primarily
decrease the productivity of developers using these tools, but may not have a direct impact on
customer satisfaction.

Furthermore, the main purpose of weekend freezes is to delay the SEV until weekdays, but the
reliability-focused end-of-the-year freezes may be also used to make the diff less risky and engineers
may need to be informed exactly why their diff was gated and what remedial actions are recom-
mended. Besides these two extremes (long, usage-based and brief, engineer availability-based) other
types of freezes may be employed in cases of introduction of major new functionality (for customer-
facing products) or expected high development activity periods (for internal development tools).

While each type of code freeze has different objectives and requirements, generally speaking,
brief code freezes are mostly focused on delaying SEVs and have lower levels of gating than the
long-term periods of high system usage code freezes. The latter add additional requirements to
explain to engineers the risk causes and potential remedial actions.

It is important to note that in all cases, the critical question is how to maximize the fraction of
SEVs causing diffs for a given level of gating as only a tiny percentage of diffs cause SEVs.

The key lesson is that the code freeze approaches that have previously been used for maintenance
branches, need significant modifications for trunk-only development. Trunk, unlike the maintenance
branch, directly impacts most of software development. The first approach to avoid disruption was
to use heavily constrained time periods where the diffs were prevented from landing. Even brief
code freeze periods were causing significant overhead and motivated differentiated gating based
on the location and task.

5.3 Implications for Developers

As our findings show, the return (after over 50 years) to trunk-only development brought the
need to modernize code-freeze, which was relegated to help manage maintenance branches only.
Furthermore, removal of release managers due to the sheer scale of changes that need to be
incorporated almost in real time, required the development of other coping strategies to ensure
uninterrupted operation.

We found that the traditional code freeze dramatically slows development during periods when it
is applied. To prevent such slowdown code needs to be “un-frozen.” As we describe above, generally
three strategies are used at Meta to accomplish that. First, the timing of the freeze is based on the
particular goals to be achieved, for example, to manage developer interruptions during weekends
and to ensure uninterrupted operation during hi-usage periods. Outside these periods, code is
unfrozen, removing impediments to developer work. The second approach is to identify parts of the
code base that are more critical (i.e., used for most critical services). This unfreezes development of
the remaining codebase. All changes modifying critical codebase are prevented, however. The third
approach, instead of focusing on the codebase, considers the risk of individual changes, allowing
remaining changes to proceed.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:20 A. Mockus et al.

The effectiveness of the last two approaches highly depends on the ability to accurately pinpoint
risky files or diffs, correspondingly. If, for example, the risk is spread uniformly over codebase
and tasks, such an approach would not bring any value. Fortunately, risk of outages is extremely
unevenly distributed over tasks and codebase and statistical models using historic data can easily
“learn” these variations in risk and predict them for new changes done during the critical periods.
Furthermore, data needed to construct such models is typically already available in most software
companies. The data still needs to be cleaned, made available in near-real-time and the models
periodically updated for maximum performance.

In short, trunk-only development with relatively modest constraints for the most risky changes
is possible without extensive work-stoppages required by traditional code freeze. It is an open
RQ whether (and in what cases) presently complex arrangements with concurrent releases that
suffer from code synchronization problems could be solved using head-only development with
more sophisticated code-freezes.

More generally, the bug prediction research, whether at the level of files or at the level of changes
(“just -in-time” bug prediction), might find a new (and, arguably, more practical) outlet in developing
increasingly sophisticated code freezes tailored to various scenarios where the tradeoff between
quality and productivity may vary over parts of the codebase or over time.

One may ask why do trunk-only development in the first place? A look at the literature on
synchronizing branches via back- and forward-porting and difficulties faced by release managers
[42] suggests that trunk only development has major benefits of distributed decision making that
does not require synchronization (and overheads associated with it) if the quality goals could be
achieved.

5.4 Experiences in Deployment

To illustrate practical limitations, we intentionally present initial prototype models that could be
rapidly evaluated and iteratively refined in production-based evolving needs and requirements. In
fact, the process was established to evolve the model based on various stakeholder requirements
and the improved ability to efficiently calculate more sophisticated features. The key part of the
process was evaluating the performance of competing models on the validation dataset. Measures
and models that did not improve the performance were put aside and models or measures that
significantly improved model’s performance were prioritized for implementation and deployment.
Not only model performance was considered but also feedback from engineers. One of the first
requests was to add an explanation for why the risk was high. Almost as high priority was a request
not to gate diffs that do not modify code or configuration, i.e., diffs modifying only comments.
Importantly, the added capabilities made possible (and lead to) entirely new functionality. For
example, the ability to threshold FileModel resulted in the need to tailor DiffsGated for each
freeze. Correlations among measures showed that some of the more difficult-to-compute measures
were highly correlated to the simpler-to-compute measures that, then, could often be used to replace
the more complex measure without decreasing the model’s predictive power. A similar exercise
was used to handle counter-intuitive coefficients resulting from the observational nature of the
underlying data, such as the risk score increases with more test coverage. Alternative predictors
were sought that convey actionable messages, yet keep predictive performance.

6 Threats to Validity

Generalizability. Drawing general conclusions from empirical studies in software engineering is
difficult because any process depends on a potentially large number of relevant context variables.
The analyses in the present article were performed at Meta, and it is possible that results might not
hold true elsewhere. However, our study does cover a very wide swath of software engineering.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

Risk Models for Code Un-Freeze at Scale 211:21

The software system covers millions of lines of code and 10s of thousands of developers who are
both collocated and working at multiple locations across the world. We also cover a wide range of
domains from user facing social network products and virtual and augmented reality projects to
software engineering infrastructure, such as calendar, task, and release engineering tooling.

While the desire to prevent SEVs is common among companies, the exact ways in which it
is done varies. Such variation may be partly due to unique circumstances surrounding the way
software is developed and services are delivered in each company, but they may partly reflect
different evolution of quality improvement efforts and would apply for other companies, even with
different software development or service delivery models. It is this latter perspective based on
experience of working in a number of substantially different large companies that bids us to share
the experiences of quality improvement efforts more broadly.

Construct Validity. We have used a straightforward set of measures that have been widely used
in the Mining Software Repositories bug prediction literature [2, 55], e.g., prior defects and churn.
We also use more complex collaboration measures relying on software supply chains and centrality
[4, 43, 48, 51, 53, 56].

As is commonly necessary for statistical models in software engineering [5, 22-25], we log-
transformed variables with highly skewed distributions and inspected correlations among predictors
in the logistic regression as well as inspecting residuals to check for nonlinear or non-monotone
relationships and doing standard regression diagnostics. We also investigated interactions among
predictors, but none satisfied our requirements (improve prediction, be easy to calculate, and be
easily interpretable). We found most of predictors to be highly correlated, hence having only
relatively few predictors provided best performance on the testing dataset. Furthermore, we found
that we could pick and choose predictors from within the highly correlated clusters without
negatively affecting model performance. For production, we thus focused on other aspects, like
ease of calculation at the time of prediction and interpretability instead. We experimented with
other techniques, including deep learning, to embed the diffs, but were not able to improve upon
the simple regression models.

Internal Validity. The numerical results for RQs 1-3, rely on historical data, and simulated how
the model would have performed had it been used by developers, i.e., how many CapturedSEVs
given the number of DiffsGated. However, it is possible that the actual performance would have
varied. To mitigate this threat, we also reported on how well the FileModel worked in production
in Section 4.5. The real-world performance of the model suggests that it is very effective at capturing
SEVs. The observational nature of the data is not an issue for the model’s predictive performance,
but it makes it challenging to explain counter-intuitive coefficients to engineers, e.g., why more
reviewers and test coverage increase the risk? A standard statistical explanation of latent variable,
i.e., an unobserved property of a diff that demands more reviewers and more testing also makes
it more risky, is very difficult to communicate. We, therefore, focused on selecting or designing
predictors that could be easily interpreted.

7 Concluding Remarks

Historically, code freeze has been used to stabilize a release branch allowing only critical fixes. At
Meta, a single trunk-based monorepo is used. Code freeze in this context requires freezing different
file paths or high-risk parts of the system during times of high-use or when engineering staff are
less available, e.g., the weekend. We worked with engineers, engineering managers, and quality
engineers to develop new approaches to code freeze that will improve engineering productivity
via un-freeze: by only gating changes that are likely to lead to SEVs. Specifically, we found that
when code freeze is applied by restricting diffs to the file paths selected by experts (ExpertPaths

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

211:22 A. Mockus et al.

approach) 27.3% of diffs would have been gated and 38% of SEVs would have been captured. Using
the FileModel to gate the same number of diffs as the ExpertPaths approach, the FileModel
would capture 56% of SEVs: an odds ratio >2. Had we used the DiffModel to gate the same number
of diffs as the ExpertPaths approach, the DiffModel would capture 60.8% of SEVs, which has an
odds ratio >2.5 over ExpertPaths approach and >1.2 over FileModel. The first major test of the
risk model was the July 2023 deployment window. Despite record traffic levels, the FileModel
ensured that no major SEVs were introduced. In total, 26% of diffs were gated, 8.8% were allowed to
land after the developer provided landing rationale. The DiffModel’s first major production usage
was during the winter code freeze. Compared to the prior year, despite 42% more diffs landed, there
was a reduction in SEVs of 52%. The risk model has been enormously effective at allowing low risk
diffs to land while gating high risk diffs and reducing SEVs.

First, we discovered and evolved a previously unreported family of code freeze strategies for
trunk-only development used in a very large software organization. Second, we demonstrate and
evaluate how traditional defect prediction and just-in-time defect prediction models can be used to
reduce the overhead of code freezes thus extending the use-case scenarios for such techniques. Third,
we proposed and evaluated how several software supply chain properties can be used to improve
code freeze effectiveness by un-freezing all but the most risky changes. Fourth, we discussed aims
and rationale for previously not reported code un-freeze strategies. Fifth, we described a very
large-scale deployment code un-freeze strategies supported by risk models in Meta.

We expect our work to result in further research and broader practical application of innovative
code un-freeze strategies and to provide a more practical rationale and more meaningful evaluation
criteria for research on software risk.

References

[1] Bram Adams and Shane McIntosh. 2016. Modern release engineering in a nutshell - Why researchers should care. In
2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 5, 78-90.
DOI: https://doi.org/10.1109/SANER.2016.108

[2] Peter C. Rigby, Andrey Krutauz, Tapajit Dey, and Audris Mockus. 2020. Do code review measures explain
the incidence of post-release defects? Empirical Software Engineering 25, 5 (2020), 3323-3356. Retrieved from
https://www.mockute.com/papers/reviews_replication_emse.pdf

[3] Fran Baum, Colin MacDougall, and Danielle Smith. 2006. Participatory action research. Journal of Epidemiology and
Community Health 60, 10 (2006), 854—-857.

[4] Christian Bird, Nachiappan Nagappan, Harald Gall, Brendan Murphy, and Premkumar Devanbu. 2009. Putting it
all together: Using socio-technical networks to predict failures. In 2009 20th International Symposium on Software
Reliability Engineering. IEEE, 109-119.

[5] B. W.Boehm. 1981. Software Engineering Economics. Prentice-Hall.

[6] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, and James D. Herbsleb. 2009. Software dependencies, the structure
of work dependencies and their impact on failures. IEEE Transactions on Software Engineering 35 (2009), 864-878.
Retrieved from https://www.mockute.com/papers/multicompany.pdf

[7] Daniel Alencar Da Costa, Shane McIntosh, Weiyi Shang, Uira Kulesza, Roberta Coelho, and Ahmed E. Hassan. 2016. A
framework for evaluating the results of the szz approach for identifying bug-introducing changes. IEEE Transactions
on Software Engineering 43, 7 (2016), 641-657.

[8] Siddharta R. Dalal and Collin L. Mallows. 1988. When should one stop testing software? Journal of the American
Statistical Association 83, 403 (1988), 872-879.

[9] Carsten F. Dormann, Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carré, Jaime R. Garcia
Marquéz, Bernd Gruber, Bruno Lafourcade, Pedro J. Leitdo, et al. 2013. Collinearity: A review of methods to deal with
it and a simulation study evaluating their performance. Ecography 36, 1 (2013), 27-46.

[10] Yuanrui Fan, Xin Xia, Daniel Alencar Da Costa, David Lo, Ahmed E. Hassan, and Shanping Li. 2019. The impact of
mislabeled changes by szz on just-in-time defect prediction. IEEE Transactions on Software Engineering 47, 8 (2019),
1559-1586.

[11] T. L. Graves, A.F. Karr, J. S. Marron, and H. Siy. 2000. Predicting fault incidence using software change history. IEEE
Transactions on Software Engineering 26, 7 (2000), 653-661.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

https://doi.org/10.1109/SANER.2016.108
https://www.mockute.com/papers/reviews_replication_emse.pdf
https://www.mockute.com/papers/reviews_replication_emse.pdf
https://www.mockute.com/papers/multicompany.pdf
https://www.mockute.com/papers/multicompany.pdf

Risk Models for Code Un-Freeze at Scale 211:23

(12]

(13]

(14]
(15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]
(24]
(25]

(26]

[27]

(28]

[29]
(30]
(31]

(32]

(33]

(34]

(35]

R. Hackbarth, A. Mockus, J. Palframan, and R. Sethi. 2016. Customer quality improvement of software systems. IEEE
Software 33, 4 (2016), 40-45. Retrieved from https://mockus.org/papers/cqm2.pdf

James Herbsleb and Audris Mockus. 2003. Formulation and preliminary test of an empirical theory of coordination in
software engineering. In 2003 International Conference on Foundations of Software Engineering. ACM Press, Helsinki,
Finland, 138-137. Retrieved from http://dl.acm.org/authorize?787510

Niels Jorgensen. 2001. Putting it all in the trunk: Incremental software development in the FreeBSD open source
project. Information Systems Journal 11, 4 (2001), 321-336.

Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken-ichi Matsumoto, Bram Adams, and Ahmed E. Hassan.
2010. Revisiting common bug prediction findings using effort-aware models. In 2010 IEEE International Conference on
Software Maintenance. IEEE, 1-10.

Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus, Anand Sinha, and Naoyasu Ubayashi.
2013. A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering 39, 6
(2013), 757-773. DOI: http://doi.ieeecomputersociety.org/10.1109/TSE.2012.70

Leo Katz. 1953. A new status index derived from sociometric analysis. Psychometrika 18, 1 (1953), 39-43.

Hossein Keshavarz and Meiyappan Nagappan. 2022. Apachejit: A large dataset for just-in-time defect prediction. In
19th International Conference on Mining Software Repositories, 191-195.

Barbara A. Kitchenham, Tore Dyba, and Magne Jorgensen. 2004. Evidence-based software engineering. In 26th
International Conference on Software Engineering. IEEE, 273-281.

Eero Laukkanen, Maria Paasivaara, Juha Itkonen, Casper Lassenius, and Teemu Arvonen. 2017. Towards continuous
delivery by reducing the feature freeze period: A case study. In 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE, 23-32.

S. Linkman and H. Dieter Rombach. 1997. Experimentation as a vehicle for software technology transfer-a family of
software reading techniques. Information and Software Technology 39, 11 (1997), 777-780.

Audris Mockus. 2007. Software support tools and experimental work. In Empirical Software Engineering Issues: Critical
Assessments and Future Directions. In V. R. Basili, D. Rombach, K. Schneider, B. Kitchenham, D. Pfahl, and R. W. Selby
(Eds.). LNCS, Vol. 4336. Springer, 91-99.

Audris Mockus. 2008. Missing data in software engineering. In Guide to Advanced Empirical Software Engineering.
J. Singer (Ed.), Springer-Verlag, 185-200.

Audris Mockus. 2010. Organizational volatility and its effects on software defects. In 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 117-126. Retrieved from http://dl.acm.org/authorize?309271
Audris Mockus. 2014. Engineering big data solutions. In Future of Software Engineering Proceedings (FOSE), 85-99.
Retrieved from https://dl.acm.org/authorize?N14216

Audris Mockus. 2019. Insights from open source supply chains. In 2019 27th ACM jJoint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering (FSE ’19). Retrieved from
https://dl.acm.org/doi/10.1145/3338906.3342813?cid=81100250207

Audris Mockus. 2023. Securing large language model software supply chains. In International Conference on Automated
Software Engineering (ASE ’23).

Audris Mockus, Randy Hackbarth, and John Palframan. 2013. Risky files: An approach to focus quality improvement
effort. In 9th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 691-694. Retrieved from http://dl.acm.org/authorize?6845890

Audris Mockus and David M. Weiss. 2000. Predicting risk of software changes. Bell Labs Technical Journal 5, 2
(April-June 2000), 169-180. Retrieved from https://mockus.org/papers/bltj13.pdf

John D. Musa, Anthony Iannino, and Kazuhira Okumoto. 1987. Software Reliability: Measurement, Prediction, Applica-
tion. McGraw-Hill Book Company.

Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn measures to predict system defect density.
In 27th International Conference on Software Engineering, 284-292.

Edmilson Campos Neto, Uira Kulesza, Daniel Alencar Da Costa. 2018. The impact of refactoring changes on the
SZZ algorithm: An empirical study. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 380-390.

Tetsuto Nishiyama, Kunihiko Ikeda, and Toru Niwa. 2000. Technology transfer macro-process: A practical guide for
the effective introduction of technology. In 22nd International Conference on Software Engineering, 577-586.

Jalaj Pachouly, Swati Ahirrao, Ketan Kotecha, Ganeshsree Selvachandran, and Ajith Abraham. 2022. A systematic liter-
ature review on software defect prediction using artificial intelligence: Datasets, data validation methods, approaches,
and tools. Engineering Applications of Artificial Intelligence 111 (2022), 104773.

Shari Lawrence Pfleeger. 1999. Understanding and improving technology transfer in software engineering. Journal of
Systems and Software 47, 2-3 (1999), 111-124.

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

https://mockus.org/papers/cqm2.pdf
https://mockus.org/papers/cqm2.pdf
http://dl.acm.org/authorize?787510
http://dl.acm.org/authorize?787510
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.70
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.70
http://dl.acm.org/authorize?309271
http://dl.acm.org/authorize?309271
https://dl.acm.org/authorize?N14216
https://dl.acm.org/authorize?N14216
https://dl.acm.org/doi/10.1145/3338906.3342813?cid=81100250207
https://dl.acm.org/doi/10.1145/3338906.3342813?cid=81100250207
http://dl.acm.org/authorize?6845890
http://dl.acm.org/authorize?6845890
https://mockus.org/papers/bltj13.pdf
https://mockus.org/papers/bltj13.pdf

211:24 A. Mockus et al.

(36]

(37]

[41]
(42]

(43]

(44]

(54]
(55]

(56]

Sophia Quach, Maxime Lamothe, Yasutaka Kamei, and Weiyi Shang. 2021. An empirical study on the use of SZZ for
identifying inducing changes of non-functional bugs. Empirical Software Engineering 26, 4 (2021), 71.

Md Tajmilur Rahman, Louis-Philippe Querel, Peter C. Rigby, and Bram Adams. 2016. Feature toggles: Practitioner
practices and a case study. In 13th International Conference on Mining Software Repositories (MSR ’16). ACM, New York,
NY, 201-211. DOI: https://doi.org/10.1145/2901739.2901745

Md Tajmilur Rahman and Peter C. Rigby. 2015. Release stabilization on Linux and Chrome. IEEE Software 32, 2 (2015),
81-88. DOI: https://doi.org/10.1109/MS.2015.31

Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology & Policy 12, 3 (1999), 23-49.

Gema Rodriguez-Pérez, Andy Zaidman, Alexander Serebrenik, Gregorio Robles, and Jestis M. Gonzalez-Barahona.
2018. What if a bug has a different origin? Making sense of bugs without an explicit bug introducing change. In 12th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 1-4.

Chuck Rossi. 2017. Rapid release at massive scale. Retrieved from https://engineering.fb.com/web/rapid-release-at-
massive-scale

Emad Shihab, Christian Bird, and Thomas Zimmermann. 2012. The effect of branching strategies on software quality.
In ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, 301-310.

Param Vir Singh. 2010. The small-world effect: The influence of macro-level properties of developer collaboration
networks on open-source project success. ACM Transactions on Software Engineering and Methodology 20, 2 (2010),
1-27.

Dag I K. Sjeberg, Bente Anda, and Audris Mockus. 2012. Questioning software maintenance metrics: A comparative
case study. In ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM ’12).
ACM, New York, NY, 107-110. DOI: https://doi.org/10.1145/2372251.2372269

Dag L K. Sjeberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kampenes, Amela Karahasanovic, N.-K. Liborg, and
Anette C. Rekdal. 2005. A survey of controlled experiments in software engineering. IEEE Transactions on Software
Engineering 31, 9 (2005), 733-753.

Gregory N. Stock and Mohan V. Tatikonda. 2000. A typology of project-level technology transfer processes. Journal of
Operations Management 18, 6 (2000), 719-737.

Ernest T. Stringer and Alfredo Ortiz Aragén. 2020. Action Research. Sage Publications.

Ashish Sureka, Atul Goyal, and Ayushi Rastogi. 2011. Using social network analysis for mining collaboration data in
a defect tracking system for risk and vulnerability analysis. In 4th India Software Engineering Conference, 195-204.
Chakkrit Tantithamthavorn, Ahmed E. Hassan, and Kenichi Matsumoto. 2018. The impact of class rebalancing tech-
niques on the performance and interpretation of defect prediction models. IEEE Transactions on Software Engineering
46, 11 (2018), 1200-1219.

Linus Torvalds. 1994. Linux code freeze. Linux Journal, 1es (1994), 4—es.

Song Wang and Nachiappan Nagappan. 2021. Characterizing and understanding software developer networks in
security development. In 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE). IEEE,
534-545.

Chadd Williams and Jaime Spacco. 2008. Szz revisited: Verifying when changes induce fixes. In 2008 Workshop on
Defects in Large Software Systems, 32-36.

Marcelo Serrano Zanetti, Ingo Scholtes, Claudio Juan Tessone, and Frank Schweitzer. 2013. Categorizing bugs with
social networks: A case study on four open source software communities. In 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 1032-1041.

Marvin V. Zelkowitz, Dolores R. Wallace, and D. Binkley. 1998. Culture conflicts in software engineering technology
transfer. In NASA Goddard Software Engineering Workshop. Citeseer, 52.

Yunhua Zhao, Kostadin Damevski, and Hui Chen. 2023. A systematic survey of just-in-time software defect prediction.
Computing Surveys 55, 10 (2023), 1-35.

Thomas Zimmermann and Nachiappan Nagappan. 2008. Predicting defects using network analysis on dependency
graphs. In 30th International Conference on Software Engineering, 531-540.

Received 23 April 2024; revised 16 December 2024; accepted 17 December 2024

ACM Transactions on Software Engineering and Methodology, Vol. 34, No. 7, Article 211. Publication date: August 2025.

https://doi.org/10.1145/2901739.2901745
https://doi.org/10.1109/MS.2015.31
https://engineering.fb.com/web/rapid-release-at-massive-scale
https://engineering.fb.com/web/rapid-release-at-massive-scale
https://engineering.fb.com/web/rapid-release-at-massive-scale
https://engineering.fb.com/web/rapid-release-at-massive-scale
https://doi.org/10.1145/2372251.2372269

	Abstract
	1 Introduction
	1.1 Research Questions (RQs)

	2 Background
	2.1 Background on Software Development at Meta
	2.2 Background on Risk Modeling

	3 Methodology and Data
	3.1 Discovering the Context
	3.2 Risk Modeling at Meta
	3.3 Data Collection
	3.4 Model Features
	3.5 Thresholds and Outcome Measures

	4 Results
	4.1 RQ 1. Current Practice
	4.2 Types of Code Freezes
	4.3 RQ 2. File Risk Model
	4.4 RQ 3. Diff Risk Model
	4.5 RQ4. Production

	5 Discussion
	5.1 History of Code Freezes
	5.2 Code-Freeze Considerations
	5.3 Implications for Developers
	5.4 Experiences in Deployment

	6 Threats to Validity
	7 Concluding Remarks
	References

