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Abstract—Release engineering has traditionally focused on
continuously delivering features and bug fixes to users, but at
a certain scale, it becomes impossible for a release engineering
team to determine what should be released. At Meta’s scale,
the responsibility appropriately and necessarily falls back on the
engineer writing and reviewing the code. To address this challenge,
we developed models of diff risk scores (DRS) to determine how
likely a diff is to cause a SEV, i.e., a severe fault that impacts
end-users. Assuming that SEVs are only caused by diffs, a naive
model could randomly gate X% of diffs from landing, which
would automatically catch X% of SEVs on average. However,
we aimed to build a model that can capture Y% of SEVs by
gating X% of diffs, where Y >> X. By training the model on
historical data on diffs that have caused SEVs in the past, we
can predict the riskiness of an outgoing diff to cause a SEV.
Diffs that are beyond a particular threshold of risk can then be
gated. We have four types of gating: no gating (green), weekend
gating (weekend), medium impact on end-users (yellow), and high
impact on end-users (red). The input parameter for our models
is the level of gating, and the outcome measure is the number
of captured SEVs, i.e., the number of gated diffs that would
have led to a SEV. Our research approaches include a logistic
regression model, a BERT-based model, and generative LLMs.
Our baseline regression model captures 18.7%, 27.9%, and 84.6 %
of SEVs while respectively gating the top 5% (weekend), 10%
(yellow), and 50% (red) of risky diffs. The BERT-based model,
StarBERT, only captures 0.61x, 0.85x, and 0.81x as many SEVs
as the logistic regression for the weekend, yellow, and red gating
zones, respectively. The generative LLMs, iCodeLlama-34B and
iDiffLlama-13B, when risk-aligned, capture more SEVs than the
logistic regression model in production: 1.40x, 1.52x, 1.05x,
respectively.

[. INTRODUCTION

Release engineering has focused on continuously delivering
features and bug fixes to users. However, at a certain scale [1],
[2], it is impossible for a release engineering team to determine
what should be released. At our scale, the responsibility
appropriately and necessarily falls back on the engineer writing
and reviewing the code. In this work, we develop models of
diff risk scores (DRS), to determine how likely the diff, also
known as a pull-request, is to cause a SEV, i.e. a severe fault
that impacts end users.

Assuming that SEVs are only caused by diffs, a naive model
could randomly gate X % of diffs from landing, i.e. sent to the

* Rigby is a professor at Concordia University in Montreal, QC, Canada.

CI system for release, which would automatically catch X%
of SEVs on average. The question then is can we do better,
i.e., can we build a model that can capture Y% of SEVs by
gating X% of diffs, where Y >> X. This is the value-add
that machine learning (ML) models can bring to the table. By
training the model on historical data on diffs that have caused
SEVs in the past, we can predict the riskiness of an outgoing
diff to cause a SEV. Diffs that are beyond a particular threshold
of risk can then be gated. Effectively, the model gives release
engineers a knob that can be tuned to control productivity-risk
trade-off.

We are also able to tune such models to be more or less
conservative depending on the availability of engineers to deal
with SEVs and the potential impacting end users. We have four
types of gating: no gating (green), weekend gating (weekend),
medium impact on end users (yellow), high impact on end users
(red). For example, on the weekend there are fewer engineers
available to fix SEVs leading to increased work for the on-call
engineers, so diffs are gated to ensure that the author of the diff
is confident that the change has been appropriately reviewed.
During periods of high use of our system, e.g., around Black
Friday, we want to ensure that we do not impact end-users as
a result, diff landed during this period are gated at a very high
level, i.e., 50%, to ensure that engineers take an extra look at
any diff that the model perceives to be risky.

We have one input parameter for our models and one
outcome measure. The input is the level of gating and is done
by picking the top X% of risking diffs according to the model.
Our outcome measure for a given model, m, and level of gating,
g, is the number of captured SEVs, i.e., the number of gated
diffs that would have led to a SEV. We mine historical data to
determine how well the model would have done compared to
the one currently running in production. We group our models
and model development around our research approaches.

A. Research Approaches

RA 1. Logistic Regression: How well does the current
model capture SEVs? Research into predicting bugs has shown
a simple set of predictors to be highly effective [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12]. At the time of writing, the
baseline model used at Meta has evolved to a logistic regression
as it is known for its robustness (not easy to get overfitted),
efficiency to train and speed of prediction. As is common for
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just-in-time defect prediction [7], [9] we include properties
of the diff (e.g.,, churn and diffusion measured via number
of files modified), author (e.g.,, prior experience modifying
changed file), as well as properties used in traditional file-based
prediction (e.g.,, [4], [5], [6], [7], [8]) such as file properties
and prior SEVs linked to the file.

Results summary. Our baseline regression model captures
18.7%, 27.9%, and 84.6% of SEVs while respectively gating
the top 5% (weekend), 10% (yellow), and 50% (red) of risky
diffs.

RA 2. BERT-based model: How well does a RoBERTa-
based model capture SEVs? StarBERT is a RoBERTa-
based [13] large language model that has been pre-trained
on millions of artifacts, such as diffs, tasks, notebooks and
SEVs at Meta. It was designed to be general purpose, includ-
ing classification, embedding generation, score computation
(regression) and more [14], [15], [16]. For the purpose of
gating during code freeze, labeled/annotated code diffs are
used to inject task-specific inductive bias into the pre-trained
model. The goal is to train (fine-tune) the model to accurately
determine whether an unseen diff is likely to cause a SEV.

Results summary. The StarBERT model only captures
0.61x, 0.85x, and 0.81x as many SEVs as the logistic
regression for the weekend, yellow, and red gating zones,
respectively.

RA 3. Generative LLMs: The recent rise of generative
models has demonstrated their ability to supercharge various
software engineering activities [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26]. Naturally, the question is can we leverage
generative models for predicting diff risk scores? These models
possess two desired properties that simpler models do not:

(i) They have an innate ability to understand textual and code
content. Arguably, the highest quality signal on diff risk
comes from the code changes in the diff, which cannot be
ingested into a logistic regression model.

Generative LLMs eliminate the need to do feature engineer-
ing. They learn these features during their training. On the
other hand, Regression models need to be trained on features
that could take significant human time to define, curate and
implement.

(i)

Our research approach includes two generative LLMs:
iCodeLlama-34B: This model is based on the publicly avail-
able? CodeLlama-34B model [27].
iDiffLlama-13B: Similar to iCodeLlama-34B, this model is
based on CodeLlama-13B. The main difference, apart from its
smaller size, is that in addition to code and natural language,
this model has also been pre-trained on historical data on diffs.
It can be considered “change-aware”, as it not only knows
about code but also code changes.

For both models, we have two subquestions:

2Code Llama is a family of large language models for code based on
Llama 2 providing state-of-the-art performance among open models, infilling
capabilities, support for large input contexts, and zero-shot instruction following
ability for programming tasks. Fore more information, refer to https://github.
com/facebookresearch/codellama

449

3a. FM LLMs: How well does the foundation pre-trained
model capture SEVs?

For this method, we extract embeddings from the pre-trained
model and train an off-the-shelf MLP [28] classifier to predict
the risk score for each diff. The key challenge is to extract
embeddings from a generative model. As input, we provide to
the LLM the diff’s title, test plan and code changes.

Results summary. Without aligning for diff risk (aka fine
tuning), the iCodellama-34B model only captures 0.58x,
0.65x, and 0.82x as many SEVs as the logistic regression for
the weekend, yellow, and red gating zones, respectively. The
corresponding numbers for iDiffLlama-13B are 0.65x, 0.81x,
and 0.90x.

3b. Risk-aligned LLMs: Does aligning the LLM towards
risk prediction allow it to capture more SEVs?

For this method, we aligned the foundation model to
understand the notion of risk by fine tuning it on past diffs that
have or have not caused SEVs, representing the two classes.
This step teaches the model the nuances of what causes a diff
to be risky. The key challenge here is to fine tune a generative
model for a classification problem such as predicting diff risk.

Results summary. When iCodeLlama-34B is risk aligned,
it captures 1.26x, 1.28x, and 0.98x as many SEVs as the
logistic regression for the weekend, yellow, and red gating
zones, respectively. The corresponding numbers for iDiffl.lama-
13B are 1.40x, 1.52x, 1.05x.

B. Contributions and Learnings

In this paper, we make the following contributions:

(i) We show that generative LLMs can be utilized for
predicting diff risk, inherently a classification problem.
We explore two possible approaches towards this: (i)
embeddings from foundation model, (ii) risk alignment.
In both approaches, we address the technical problem of
aggregating embeddings from a generative model, and fine-
tuning a generative model for classification, respectively.
We show that change awareness via diff pre-training
adds significant value towards model performance, as
DRS is a diff-related problem. Our experiments reveal
that the change-aware model iDiffL.lama-13B outperforms
iCodeLlama-34B despite being smaller in size, with the
benefit mainly coming from its pre-training on diffs.

We show that risk alignment further pushes the models’
performance as they learn the nuances of diff risk. In the
end, the change-aware risk-aligned model iDiffLlama-13B
reaches new state-of-the-art for predicting diff risk at Meta.
We also show that this model generalizes effectively to
predicting risk for diffs beyond its training domain.

(iv) We discuss practical challenges associated with training

and aligning generative LLMs.

(ii)

(iii)

The remainder of this paper is structured as follows. In the
next section, Section II, we introduce the idiosyncrasies of
developing software at Meta, the evolution of code freezes
practices at Meta, and how the risk of gated diffs is shown to
the developers. In Section III we examine the three types of
risk models that are investigated in this paper, namely, a logic
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regression model, a RoBERTa-based model, and LLMs-based
models. Section IV gives details on the evaluation setup and
data, and in Section V we present the performance of the
models in identifying SEVs. Section VI discusses potential
threats to validity of our study, and in Section VII we discuss
our results in the context of the current state-of-the-art. In
Section IX, we present our concluding remarks.

II. BACKGROUND
A. Software Development at Meta

At Meta, we develop software for both our servers and client
devices, including specialized hardware devices. This approach
allows us to have fine-grained control over versioning and
configurations, and enables us to quickly push new code updates
to production. Before any code is deployed, it undergoes
rigorous testing, including peer review, in-house user testing,
automated tests, and canary tests. Once the code is deployed,
engineers closely monitor logs to identify potential issues.

At Meta, we place a strong emphasis on code reviews as
part of our development process. We use Phabricator as the
cornerstone of our CI system, which facilitates modern code
reviews. Developers submit code for review, creating a patch
representing the initial version of the code. Reviewers can
suggest improvements, leading to additional revisions until the
diff is either approved and incorporated into the codebase or
rejected. This process promotes high coding standards, helps
detect flaws, and spreads knowledge in the organization.

In addition to our focus on code reviews and testing, we
also have a formal process for reporting and addressing bugs,
outages, or incidents. These are reported as SEVs (Site Events),
which are used when the core functionality of a product is
impacted without any workaround, there are numerous and
critical customer reports for the same issue, or in case of
important nonfunctional problems related to privacy, security,
pricing, or billing. By having a clear process for reporting and
addressing these issues, we can ensure that we maintain the
quality and reliability of our products. Every SEVs undergoes
a manual root cause analysis and, if caused by a diff, that diff
is recorded.

B. The Evolution of Code Freeze Practice at Meta

Code freeze is an old practice. At Meta, the practice of code
freeze is still observed during certain periods of the year, such
as holidays or major events. During this time, Meta limits
or suspends changes to its production systems to minimize
the risk of service disruptions or outages. This means that
developers are not allowed to push new code to production,
and any ongoing deployments must be completed before the
code freeze starts. The exact duration and scope of a code
freeze can vary depending on the specific circumstances, but
the goal is always to ensure the stability and reliability of
Meta’s systems during critical periods. While code freeze may
seem like an old practice, it remains an important part of Meta’s
development process, as it helps the company maintain the
high availability and performance of its products and services.
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Unlike traditional code freeze, where a branch is cut and
only fixes are integrated, code freeze at Meta is actually a code
pause or delay, where code is not landed into the monorepo
to be released for a set, and usually, short period of time. For
example, over Black Friday the code is frozen for two reasons:
(1) Fewer engineers were available and more disruption for
SRE and on-call engineers. (2) Black Friday sees high usage of
our systems and we did not want to degrade the user experience.

The code freeze process has evolved. (1) Originally, the
freeze was based on the decisions of the release engineering
team. However, this does not scale [2]. As a result, the decision
to land a diff was pushed back to individual engineers. (2)
To deal with this, Meta decided to have experts select a
set of paths and freeze diffs that touch these paths. The
main drawback of relying on individual experts is that it is
a perception of risk and requires constant manual effort to
update. It is also not very precise including all files on a
path. Furthermore, different types of change have different
risks, for example, a comment only change to a file on a risky
path has no risk. (3) The current solution used in production
is a logistic regression model that is based on a careful
selection of around a dozen predictors from almost 100 the
potential predictors handcrafted to represent various aspects of
diff criticality, diffusion (number of co-changed files), author
expertise, and modified file properties. While some of the
predictors were obtained from existing literature on just-in-time
defect prediction (see a recent survey [12]), most were based
on the specifics of Meta’s development process. The selection
process and ultimate predictors are described in Section III-A.

C. Showing the Risk of Gated Diffs to the Developers

Any diff that is above the gated risk threshold set by the
team or organization will be blocked from landing. This is
done to prevent high-risk changes from being introduced into
the codebase and potentially causing SEVs. Instead, the diff
will need to be reviewed and modified to reduce its risk score
before it can be landed.

Alternatively, the developer can wait until the code freeze
is over and then land their diff. For example, if the code
freeze starts on a Friday, the developer can wait until the
following Monday morning to land their diff. This allows the
developer to ensure that any issues or problems that may arise
during the code freeze are addressed before their diff is landed.
Additionally, waiting until after the code freeze is over ensures
that the diff is not blocked from landing due to the increased
risk threshold. In the event that the diff needs to land, there
is an escalation process. There are a set of standard reasons
that will escalate the diff to the managers that may accept the
reason for the diff to land during the code freeze.

Figure 1 shows the information provided to the developers
in the Phabricator Ul, which includes the risk score of the diff,
feedback mechanisms, informational section, reasons for the
diff to be considered risky, and potential actions. The risk score
is a value that represents the level of risk associated with the
diff. The feedback mechanisms allow the developer to provide
feedback on the usefulness of the diff risk score. The reasons
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iZ Risk Score

© This diff has a high risk of leading to a SEV, scoring above the 95th percentile for risk

Risk Score: 0.01643. Threshold: 0.01626

() We recommend to exercise caution and follow the action recommendations below to further reduce risk but an exception approval might still be needed to land

the diff.

Fig. 1: Showing the Risk in the Phabricator UI

for the diff to be considered risky are also listed, along with
potential actions that the developer can take to reduce the risk
score and land the diff successfully.

III. MODELS

We examine three types of models: regression model,
RoBERTa-based model, and LLMs.

A. Regression Model

The regression model is our baseline starting point model.
Table I shows the features used in one version of the final
model. For a logistic regression model the fitted model is
simply a single vector multiplication of fitted coefficients and
predictors, so the only hard part is to ensure that the values of
the predictors are available in real time.

The large number of predictors (close to 100 were calculated
based on academic literature and specific aspects of the way
software development at Meta is structured — see Section II-A)
and high correlations among them provide opportunity to select
a single predictor from each of the fairly large correlated
groups of predictors. Such clusters of predictors tend to be
representing distinct phenomena that may increase the risk.
For example, how diffuse the diff is and how much code
it modifies, how much experience author had modifying the
changed code previously, the properties of the modified files,
such as programming language used, complexity of the code
in the modified files, and external information such as prior
history of being modified by a SEV causing diff or being used
to implement highly critical service.

This process involves considerations on prioritizing predic-
tors that are actionable and easy to explain to developers.
Obviously, any constraints on predictor selection may affect
model performance, so this careful manual selection process
attempts to balance actionability, ease of understanding, and
performance.

Table I shows features of the production model presented in
the results section. It includes properties of the change, like how
many files are modified, properties of the modified code, like
lines of code changed or programming language, properties of
the developer making the change like their experience and part
of organization. More unusual predictors include an indicator of
whether the code is a part of a critical service. Most important
software services are classified according to their criticality and
code executed as part of such services is then tagged according
to that class. To fit the model and do historic performance
analysis all measures are calculated when diff landed.

B. Why Large Language Models?

The underlying DRS model today is a logistic regression
trained on diff metadata such as the diff, file, author and
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related features. One limitation of such simple models is that
they do not understand any content based features, e.g., diff
code, summary test plan etc., which arguably can contain the
highest signal of diff risk. For instance, a diff that only adds
comments to a file can never cause a SEV, but could be flagged
by the model because it touches the same file as a previous
SEV-causing diff. On the other hand, a particular code pattern
that consistently causes a SEV could be missed by the model
because of its inability to understand code changes.

Recently, LLMs have been proven to be effective in un-
derstanding and generating textual and code content. As a
result they have been widely adopted to help improve software
engineering productivity [29], [26], [30], [31]

Large language models (or LLMs) in recent years have been
proven to be efficient in code understanding, improvement
and generation, thus starting to be widely adopted to help
improve software engineering efficiency[1,2]. We would like
to leverage LLMs to understand the code change when doing
diff risk score analysis to improve the accuracy of diff risk
score, boosting engineering productivity by highlighting and
providing suggestions for engineers.

LLMs also eliminate the potentially expensive feature
engineering that is needed by simpler models such as logistic
regression. For instance, when dealing with code, LLMs do
not need to be fed hand-curated features about what language
the code is in, how large it is, whether it is a comment, and so
on. They can automatically learn these features internally as
part of their training, albeit not human interpretable. Table II
lists the textual and code features from a diff that are fed to
the LLMs for both training and inference for risk prediction.

C. StarBERT model

StarBERT is a RoBERTa-based model for understanding se-
mantics of various artifacts across Meta ’s internal platform [13].
It can be used for several different purposes, including classifi-
cation, embedding generation, score computation (regression)
and more [14], [15], [16].

At the core of StarBERT platform are the pretrained models.
The representations learned by these models are generic and
transfer to downstream tasks of platform users through fine-
tuning. Transfer learning provides substantial benefits to user
teams by (1) requiring much smaller labeled datasets, (2)
immediate benefit of base-line performance out of the box, (3)
simplifying feature selection and (4) considerably faster model
iterations. Pretraining is essential to save on the research and
development that goes into model building and selection as
well as enable impact that is otherwise not possible.

To fine tune the model for a specific task such as computing
the risk score of a diff, labeled/annotated code diffs are used

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 26,2025 at 13:30:57 UTC from IEEE Xplore. Restrictions apply.



TABLE I: The features used in the logistic regression that is in production

Feature type  Feature used in Logistic Regression

Diff log of the added and deleted SLOC relative to size of file (ratio)
New files created by the diff (boolean)
Diff only creates new files (boolean)
Diffusion log of the number of files in this diff
log of the number of authors that modified changed files
Criticality Previous SEV in the file (boolean)
Previous SEV in the folder (boolean)
Is file involved in high-criticality service (boolean)
File Sum of the cyclomatic complexity over files touched in this diff
Programming language (seven boolean indicators if at least one file in that language is modified)
Expertise If the author is the original creator of the file

Overall number of diffs previously landed by the author at Meta

TABLE II: The features fed to the LLMs during both training and inference for DRS

Feature type Feature fed to the LLM

Diff Title
Test Plan
Code changes

Title of the diff, typically a concise description of the code change in a few words
Commands (build, lint, tests) executed (and outputs) by the diff author to validate the code changes
Filenames and the corresponding code changes in the standard unified diff (“unidiff””) format

to inject task-specific inductive bias into the pre-trained model.
The goal is to train (finetune) the model to accurately determine
whether an unseen diff is likely to cause a SEV.

D. Generative LLMs

The state-of-the-art generative LLMs of today have been
effective at powering several software engineering tasks,
ranging from code completion [22], [24], test generation [23],
to code review [26]. These models are based on a “foundation
model” that is pre-trained on internet-scale data (billions of
tokens) on a simple generic task, i.e., next token prediction.
They are then prompted as-is or fine-tuned further on domain
specific data to elicit increased performance on a specific task.

CodeLlama [27] is such an Al model built on top of
Meta GenAl’s Llama 2 [32], fine-tuned for generating and
discussing code. Essentially, CodeLlama features enhanced
coding capabilities. It can generate code and natural language
about code, from both code and natural language prompts (e.g.,
“Write me a function that outputs the Fibonacci sequence”).
It can also be used for code completion and debugging. It
supports many of the most popular programming languages
used today.

For this work, we considered two models built on top of
CodeLlama.

1) iCodeLlama: iCodeLlama is a Meta-internal model
that we have developed by further pre-training CodeLlama
on Meta’s proprietary code base, including code from our
monorepo, natural language comments appearing inline, and
other code-related documentation. It exhibits similar capabilities
as CodeLlama but on Meta’s internal contexts. iCodeLlama-
7B has been used to power Meta’s code completion system,
CodeCompose [24], [25].

2) iDiffLlama: iDiffLlama is also based on CodeLlama, but
in addition to pre-training on code and natural language, it
is also pre-trained on internal diffs, i.e., code changes. This
makes the model “change-aware” as it understands the nuances
of not just static code, but also the evolution of code through
changes. Particularly, diffs represent an intent by a developer
to commit their changes to the monorepo. iDiffl.lama captures
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that intent through learning the relationship between a diff’s
title, summary, test plan and the corresponding code changes.

E. Using Generative LLMs for classification

The first question to answer when using today’s LLMs
(iCodeLlama or iDifflLlama) for a problem like DRS is, can
generative models be used for classification problems? They are
designed for generating text or code and having conversations
rather than classifying an input into categories.

One simple way to leverage a GenAl model for classification
is through prompting (0-shot or few-shot). While this approach
works for other applications, there are two problems with it
particular to DRS:

o The model needs to provide a risk score rather than a
binary label, as the score is used for ranking. Prompting
the model to output a score is quite tedious as the model
has to generate a numerical score token by token. It is
also unreliable, as the model does not have a universal
view of risk and may generate uncalibrated scores across
different examples.

The input to DRS is not a simple piece of text but a
heavyweight diff which often occupies a significant portion
of the context window, making few-shot with current
generative models infeasible. DRS is also an inherently
hard problem due to its needle-in-the-haystack nature, and
it is difficult to provide sufficiently balanced examples for
few-shot learning.

Instead, we explored two methods for using LLMs for
classification: embeddings from foundation model, and risk
alignment.

1) Embeddings from foundation model: The idea here is
to extract the relevant features from a given diff, embed the
features using the pre-trained foundation LLM, and use those
embeddings along with the labeled DRS data to train an off-
the-shelf classifier such as an MLP. The pipeline is illustrated
in Figure 2.

To compute embeddings for an input diff, we do a single
forward pass on the input and aggregate the hidden states in
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Fig. 2: Pipeline: Embeddings from foundation model. A model forward pass is run on the input diff, and hidden states from the
final Transformer layer are aggregated via maxpool to form the diff’s embedding E. An external classifier is then trained on

the embeddings and labeled DRS data.

the final layer of the Transformer model. For classification
tasks, we need to represent a sequence of embeddings as a
single vector and there are several “pooling” techniques that
people use. Mean pool calculates the element-wise average of
all token embeddings, while max pool takes the element-wise
maximum value. In our experiments for the risk prediction
(or classification) tasks, max pooling worked well as it is not

affected by outliers and noise as much as the other technique.

An advantage of this approach is that it makes it easier to
integrate the embeddings with the current logistic model trained
on other metadata features.

2) Risk alignment: In this approach (depicted in Figure 3),
we run a typical supervised fine-tuning (SFT) phase on the
pre-trained LLM using labeled DRS data. To transform the
classification problem into a generative task, we use special
markers [DRS] [/DRS] to annotate the input, append the
label (0 or 1) to the end, and train the model to “generate” the
label token.

During inference, we can query the model to generate the
label token. To get the risk score rather than just the label, we
extract the probability of the label tokens “0” and “1” from
the next token distribution. If the model is aligned well, all
other tokens in the model’s vocabulary should have close to
zero probability of being generated.

The advantage of this approach is that it allows the LLM to
backpropagate and learn the nuances of diff risk, i.e., makes
it “risk-aligned”, rather than serving untuned embeddings
that only capture general properties of diffs. However, this
requires a computationally expensive fine-tuning of the LLM
and deployment of this specialized model.

IV. EVALUATION METHOD AND DATA

To ensure a fair comparison of different models for Diff
Risk Scoring (DRS), we use the same dataset and splits across
all models. We split our data chronologically (by diff closed
date) into training, validation, and testing sets. This approach
offers a more realistic split compared to random sampling, as
it better reflects the temporal nature of the data.

Although Meta has a monorepo, we scoped our experiment

and data to a particular organization’s diffs within the company.

This allows us to test the model’s generalization capability (see
Section V), as well as focus engineering efforts on deployment
within the pilot organization at Meta.
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TABLE III: Data splits

diff closing data from  diff closing data to  sample size  SEV count/rate
Training 2022-01-01 2023-05-04 855282 1981 (0.23%)
Validation ~ 2023-05-05 2023-05-06 120967 214 (0.18%)
Testing 2023-07-01 2023-10-02 181052 305 (0.17%)

Our testing data consists of 181052 regular diffs and 305
SEVs. By using a chronological split, we can evaluate the
models’ performance on unseen data that was not used during
training or validation. This allows us to better assess their ability
to generalize to new, unseen data in real-world scenarios.

Dealing with skewed data. When either training an external
classifier or aligning the LLM for risk prediction, there is an
extreme imbalance in the labeled data, as SEV-causing diffs
account for less than 1% of all diffs (see Table III). To deal with
this imbalance we resampled the examples in the training data
to arrive at a 5:1 negative-positive class ratio. We did this only
for the training data to ensure that the model does not regress
to overwhelmingly predicting the majority class. We did not
modify the validation and testing data in order to preserve the
real world distribution. We then froze the resampled training
data and used it for all models.

For the dataset we select the top g riskiest diffs from each
model, and determine as outcome what percentage of SEVs
would be captured. We use the current production gating levels
of 5% (weekend), 10% yellow (intermediate), and 50% red

(high).
V. RESULTS

RA 1. Logistic Regression

How well does the current model capture SEVs?

For production use at scale, we need a simple model and
features that can be calculated across thousands of engineers
and diffs. As we discussed in the model development, see
Section III-A, we reviewed the literature on defect modelling
and selected the represented set of features shown in Table I.

In Table IV, we see that our baseline regression model
captures 18.7%, 27.9%, and 84.6% of SEVs while respectively
gating the top 5% (weekend), 10% (yellow), and 50% (red) of
risky diffs. This regression model has been used in production
for more than 9 months.

RA 2. StarBERT
How well does a RoBERTa-based model capture SEVs?
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Fig. 3: Pipeline: Risk alignment. The LLM undergoes supervised fine-tuning (SFT) on labeled DRS data, where each diff is
annotated with special tokens [DRS] [/DRS] that denote the model to predict risk. The LLM is trained to generate the label
token 0 or 1 appended to the end of the input. During inference, the risk score is computed based on the token probabilities of

the labels 0 and 1.

TABLE IV: The percentage of captured SEVs by model as well as the percentage increase relative to the current project logistic

regression model

Model Weekend (g = 5%) Yellow (g = 10%) Red (g = 50%)

SEVs Captured  vs Regression | % SEVs Captured  vs Regression | % SEVs Captured  vs Regression
Logistic Regression 18.7 % — X 27.9 % — X 84.6 % — X
StarBERT 11.5 % 0.61 x 23.6 % 0.85 x 68.9 % 0.81 x
iCodeLlama-34B 10.8 % 0.58 x 18.0 % 0.65 x 69.2 % 0.82 x
iCodeLlama-34B risk aligned 23.6 % 1.26 x 35.7 % 1.28 x 83.0 % 0.98 x
iDiffLlama-13B 12.1 % 0.65 x 22.6 % 0.81 x 75.7 % 0.90 x
iDiffLlama-13B risk aligned 26.2 % 1.40 x 42.3 % 1.52 x 88.5 % 1.05 x

StarBERT is a RoBERTa-based [13] large language model.
For the purpose of gating during code freeze, labeled/annotated
code diffs are used to inject task-specific inductive bias into
the pre-trained model. The goal is to train (finetune) the model
to accurately determine whether an unseen diff is likely to
cause a SEV. The model is fully described in Section III-C.

In Table IV, we see the StarBERT model only captures
0.61x, 0.85x, and 0.81x as many SEVs as the logistic
regression for the weekend, yellow, and red gating zones,
respectively. Clearly the RoBERTa-based model cannot replace
the logistic regression for production purposes.

RA 3. Generative LLMs

For generative LLMs, we pick the two models. Specifically,
we take iCodeLlama-34B and iDiffL.lama-13B, having 34B
and 13B parameters, respectively. The full details on the model
development can be found in Section III-D.

RA 3a. FM LLMs: How well does the foundation pre-trained
model capture SEVs?

We use the embedding in the form of the iCodeLlama-34B
and iDiffLlama-13B and use a classifier to determine the DRS
risk score. The method is described in Section III-E1 and the
pipeline is shown in Figure 2. We trained an external 3-layer
MLP classifier on the embeddings consisting of (100, 150, 50)
hidden units, respectively.

In Table IV, we see that without aligning for risk, the
iCodelLlama-34B model only captures 0.58x, 0.65x, and
0.82x as many SEVs as the logistic regression for the weekend,
yellow, and red gating zones, respectively. The corresponding
numbers for iDiffl.Llama-13B are 0.65x, 0.81x, and 0.90x.
iDiffLlama’s missed SEVs can be attributed to the similarity
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between code changes that trigger SEVs and those that do
not, making it challenging for the model. Additionally, the
unbalanced nature of the dataset, with a larger number of non-
SEV changes, can lead models that are prone to false negatives.
Moreover, this shows that unaligned foundation LLMs are not
effective at capturing SEVs.

RA 3b. Risk aligned LLMs: Does aligning the LLM towards
risk prediction allow it to capture more SEVs?

We saw that using the embeddings with an MLP was
ineffective. We fine-tune the iCodeLlama-34B and iDiffLlama-
13B by running one epoch on the training data with an effective
batch size of 64. The training was conducted on a cluster of
64 Nvidia A100 GPUs, and took around 2-4 hours to complete
depending on the size of the LLM. The full methodology to
make the LLMs risk aligned is described in Section III-E2 and
the pipeline is shown in Figure 3.

In Table IV, when iCodeLlama-34B is risk aligned it captures
1.26x, 1.28x, and 0.98x as many SEVs as the logistic
regression for the weekend, yellow, and red gating zones,
respectively. The corresponding numbers for iDiffl.Llama-13B
are 1.40x, 1.52x, 1.05x.

An interesting observation here is that while both risk aligned
models outperform the baseline logistic regression, iDiffL.lama-
13B outperforms iCodeLlama-34B despite being a smaller
model. This reveals that change-aware (diff) pre-training adds
significant value to an LLM’s performance on predicting diff
risk. This makes sense as DRS is essentially a diff related
problem. Thus, we have arrived at a new state-of-the-art for
diff risk prediction at Meta, with the change-aware risk-aligned
model iDiffL.lama-13B.
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3c. Generalizability: How well does the best performing
research approach generalize beyond its organization?

In order to test the model’s generalizability, we used the
risk aligned iDiffLlama-13B to predict the diff risk for diffs in
another organization under Meta. We ensured that there is no
overlap between diffs that land in the two organizations’ part of
the code base. As before, we compared the model to an existing
logistic regression model used in the other organization.

Out of 160 SEVs the logistic regression model was able
to capture 11.9%, 26.3% and 84.4% of SEVs at the three
gating thresholds of 5%, 10% and 50%, respectively. However,
iDiffLlama-13B was able to capture 21.9%, 39.4%, and 88.8%
of SEVs at the same thresholds, translating to a 1.84x, 1.5x,
and 1.05x improvement over the baseline. This shows that
LLMs are effective at generalizing beyond their training domain
for predicting diff risk.

VI. THREATS TO VALIDITY
A. Generalizability

One potential threat to the generalizability of our findings is
the limited scope of our dataset. Our study was conducted using
data from a single company, which may not be representative
of all software development scenarios. The specific tools,
processes, and culture of our company may have influenced
the results of our study, and other companies may have

different factors that impact their release engineering decisions.

Therefore, it is unclear whether our findings can be generalized
to other contexts.

B. Construct Validity

Another potential threat to validity is construct validity. Our
study focused on diff risk scoring for SEV prevention only,
and did not consider other factors that may impact release

engineering decisions, such as business value or user feedback.

Therefore, our approach may not fully capture the complexity of
the problem and may not be suitable for all release engineering
scenarios. Additionally, our models were trained on historical
data, which may not be representative of future software
development scenarios. Therefore, the performance of our

models may degrade over time and require periodic retraining.

C. Internal Validity

Finally, there are potential threats to internal validity in
our study. One potential threat is the evaluation metric used
to assess the performance of our models. We evaluated our
models based on a single metric, SEV capture rate, which
may not fully capture the complexity of the problem. Other
metrics, such as the ultimate goal of reducing the number
and impact of SEVs and minimizing disruptions to developer
productivity from gating, may provide additional insights into
the effectiveness of our approach. Another potential threat is
the possibility of unmeasured confounding variables that may
have impacted our results. For example, there may be other
factors that influence the likelihood of a diff causing a SEV,
such as code quality or team dynamics, that were not captured
in our analysis.
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VII. DISCUSSION AND LITERATURE
A. Release Engineering

Release engineering is a discipline of software engineering
that focuses on creating pipelines that takes source code
and turns it into a final product that is ready for release.
This includes compiling, packaging, testing, and signing the
code [33]. The goal of release engineering is to ensure that
the pipeline is efficient and reliable, so that products can be
delivered to customers quickly and with high quality. This
is especially important for companies like Meta, providing
services to millions of users, as they need to be able to deliver
updates to their customers in a timely manner. Code freeze, the
main focus of this paper, is a common practice during which
no changes are allowed to be made to the codebase, in order to
ensure stability and prevent any issues during critical periods
such as holidays or major events.

The models we discussed in the paper aim at relaxing the
code freeze periods, this way allowing users to land diffs that
are considered not to harm the stability of the current release.
This is, a move towards a code chill, which is a step in moving
away from a hard/strict code freeze, as it allows teams to deploy
important changes more freely and gives them the autonomy —
and responsibility — to make the call on whether a deployment
is important enough to risk deploying. To help teams have that
autonomy, and responsibility, we are equipping the teams at
Meta with a quantification of the diff risk score of their diffs.

The models presented in the paper aim to reduce the
strictness of code freeze periods, enabling developers to land
diffs that are deemed safe for the current release (that is, do not
compromise the stability of the current release). This approach
represents a shift towards a “code chill,” which is a step towards
relaxing strict code freeze policies and allows teams to deploy
changes more easily while assuming responsibility for their
decisions. To support this autonomy and accountability, we are
providing Meta teams with a quantitative assessment of the
risk associated with their diffs.

B. Defect Prediction Models

Code quality is one of the pillars of software engineering
and statistical models attempting to predict software defects
have been developed in the previous century [5], [6]. While
traditional defect prediction models focus on identifying which
files will have defects, just-in-time defect prediction models [7],
[9] attempt to predict which change (diff) will cause a problem.
Both fields are extremely mature (see systematic surveys of
recent work in, e.g.,, [12] for just-in-time prediction, [34] for
the more recent development of application of deep learning
methods).

One aspect that distinguishes our effort from almost all prior
work is the accuracy of identifying SEVs causing diffs. At
Meta, all SEVs undergo a rigorous review process and the
trigger (cause) is identified. While sometimes SEV is caused
by hardware failures or network outages, often the cause is a
software change (diff). Virtually all published work uses rather
noisy estimates of which diff caused the problem based on
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information from issue-fixing diffs, while in our case the data
is manually derived by area experts.

C. Costs: Human vs. Machine

There is always a cost associated with training and deploying
models. For the logistic regression model, the cost is in terms
of human time involved in feature engineering, i.e., cleaning
the data, curating and implementing features, determining best
predictors, feature importance, etc. Whereas, the compute cost
involved in training and deploying the model is relatively small.
They can be trained on CPUs, and usually take in the order of
minutes to complete.

On the other hand, LLMs require heavy compute power to
operate. They require GPUs to train and deploy, and take in
the order of hours or days to train. However, they completely
eliminate the need to do any feature engineering. They are
able to take in raw data and learn these (latent) features during
their training. They also have a highly desirable property of
transfer learning across training phases, as they are based on a
powerful foundation model pre-trained on billions of tokens.
These characteristics allow LLM-based solutions to follow
simpler scaling laws, as data and compute become the only
two requirements for scaling up.

VIII. FUTURE WORK

We discuss two avenues of future work: (1) generative
reasoning on why a diff may lead to a SEV (2) ensemble
learning combining LLMs and regressions.

A. LLM fine-tuning for generative reasoning

Generative reasoning is an alternative approach to classifica-
tion. With an appropriate SFT phase, LLMs could potentially
synthesize an answer of whether a diff is risky along with an
explanation of why, in a purely generative manner. This method
is used in the Al community to have LLMs adapt to specific
domains, such as the work done in Microsoft Research [35]. On
the other hand, SFT for generative reasoning than classification
is a much longer term effort, owing to the following:

« It requires large investment to collect actual SEV reasoning
traces and their root causes, rather than the label of
whether the diff caused a SEV. Moreover, discussions
around SEVs are multi-modal, involving a combination
of natural language, code, screenshots or videos, and so
on. Developing a multi-modal LLM capable of reasoning
about SEVs is beyond the scope of this paper.
Hallucinations are a major problem with generative
reasoning, which would confuse the user even more if
the LLM generated the wrong explanation. Mitigating
hallucinations is still very early research, and the industry
has little experience on this. There are existing efforts to
optimize prompt engineering to mitigate hallucinations,
which from our observation provides limited help.
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B. Ensembling LLM’s and Logistic Regression’s risk score

The diff, author, and file related features in the logistic re-
gression model continue to be powerful and valuable predictors.
Consequently, it is advantageous to ensemble the LLM and the
logistic regression model. We incorporated the LLM score as an
additional feature into the logistic regression model. During the
inference process, an LLM score is initially obtained, followed
by the computation of logistic regression. In instances where
the LLLM score is absent (due to timeout, etc.), we impute it
as the mean.

Alternative ensemble strategies include:

o Utilizing the LLM embedding as input variables for
logistic regression rather than the prediction score, which
may encompass more comprehensive information.
Implementing a weighted average of the LLM score and
logistic regression score, where the weight is determined
by maximizing precision/recall on the evaluation dataset.
Considering the addition of features in logistic regression
into the LLM, enabling the LLM to fully supplant the
logistic regression model.

IX. CONCLUSION

In conclusion, our study has demonstrated that the use of
machine learning models can significantly improve the accuracy
of diff risk scoring, which can help release engineers make
more informed decisions about which diffs to gate. The logistic
regression outperformed the ROBERTa-based models. However,
the generative LLM models showed promising results, with
the iDiffLlama-13B model capturing the most SEVs among
all models tested.

The following are some highlights and learning worthy of
note from our experiment:

o Our experiment answered the question of whether genera-

tive models can be suited for a classification problem like
DRS. We validated using both the foundation models and
risk aligned models for classification. Although expected,
the results confirm that fine-tuning a model for a problem
domain significantly boosts its performance compared
to using a pre-trained model, ie., risk aligned models
outperformed pre-trained models across all metrics.
Directly using the LLM for prediction performs better
than using an external classifier trained on foundation
LLM embeddings. This is likely due to the fact that there
is loss of information when aggregating (pooling) hidden
states for embeddings, and there is no self-attention in
the external classifier when making the prediction.
The change-aware model iDiffLlama-13B outperforms the
general purpose code LLM iCodeLlama-34B, despite the
former being a smaller model. This is due to it being
a specialist model specifically trained to understand diff
data in the form of patches.

These findings highlight the potential of machine learning
models to enhance the efficiency and safety of the software
development process. Future work includes further refinement
of the models and exploration of additional features to
incorporate into the models.
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