
To the Graduate Council:

I am submitting herewith a dissertation written by Mahmoud Jahanshahi entitled

“Copy-Based Reuse and its Implications in Open Source Software Supply Chains.”

I have examined the final paper copy of this dissertation for form and content and

recommend that it be accepted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy, with a major in Computer Science.

Audris Mockus, Major Professor

We have read this dissertation
and recommend its acceptance:

Audris Mockus

Jian Huang

Doowon Kim

Russell Zaretzki

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

To the Graduate Council:

I am submitting herewith a dissertation written by Mahmoud Jahanshahi entitled

“Copy-Based Reuse and its Implications in Open Source Software Supply Chains.”

I have examined the final electronic copy of this dissertation for form and content

and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy, with a major in Computer Science.

Audris Mockus, Major Professor

We have read this dissertation
and recommend its acceptance:

Audris Mockus

Jian Huang

Doowon Kim

Russell Zaretzki

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Copy-Based Reuse and its

Implications in Open Source

Software Supply Chains

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Mahmoud Jahanshahi

05 2025

© by Mahmoud Jahanshahi, 2025

All Rights Reserved.

ii

This dissertation is dedicated

To my beloved mother, Mahnaz, whose unwavering love and support have been my

greatest source of strength and inspiration.

To my wonderful brother, Hamed, and my dear sister, Fatemeh, for their constant

encouragement and steadfast support.

iii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Dr.

Audris Mockus, for his unwavering support, exceptional mentorship, and invaluable

guidance throughout my research journey. His insights and encouragement have been

instrumental in shaping both this dissertation and my growth as a researcher.

I am profoundly grateful to Dr. James Herbsleb and Dr. Bogdan Vasilescu for

their collaboration and insightful contributions to this research. Their expertise and

guidance have significantly enriched my work and broadened my perspectives.

I also extend my sincere appreciation to my dissertation committee members,

Dr. Russell Zaretzki, Dr. Jian Huang, and Dr. Doowon Kim, for their thoughtful

feedback and continuous support. Their critical insights and suggestions have greatly

enhanced the quality and rigor of this dissertation.

I am deeply thankful to my co-authors, David Reid and Adam McDaniel, for their

invaluable collaboration. Their contributions have played a pivotal role in refining

my research, and our joint efforts have been instrumental in shaping the findings

presented in this dissertation.

Finally, I acknowledge the generous support of the National Science Foundation

through awards 1633437, 1901102, 1925615, and 2120429, which made this research

possible.

iv

Gegen den Positivismus, welcher bei den Phänomenen stehen bleibt, “es gibt nur

Tatsachen”, würde ich sagen: nein, gerade Tatsachen gibt es nicht, nur

Interpretationen.

Against positivism, which halts at phenomena — “There are only facts” — I would

say: No, facts is precisely what there is not, only interpretations.

- Friedrich Nietzsche

The Will to Power, §276 (Kröner ed.), §481 (trans. Kaufmann & Hollingdale)

v

Abstract

This dissertation investigates copy-based reuse in open source software (OSS) supply

chains, emphasizing its identification, analysis, and potential impacts.

First, we develop a novel algorithm to identify copy-based reuse by detecting

whole-file copying across the global OSS ecosystem. Leveraging the World of Code

infrastructure, we generate a large-scale map of copy-based reuse instances, providing

a foundation for future research and tool development to support reuse practices and

mitigate associated risks.

Next, we analyze the prevalence, patterns, and motivations behind copy-based

reuse. By integrating large-scale reuse detection with developer surveys, we find that

copy-based reuse is widespread and varies by programming language, resource type,

and project size. Popular projects drive substantial reuse activity, yet more than

half of copied resources originate from small and medium-sized projects. Developers

cite diverse motivations for copying code, including convenience and trust, while

expressing a preference for package managers when feasible.

Our first case study examines the implications of copy-based reuse for OSS license

compliance. We construct a copy-based code reuse network and quantify potential

license noncompliance across the OSS ecosystem. Our analysis reveals that projects

with permissive licenses, such as MIT and Apache, experience higher reuse rates,

whereas copyleft licenses, like GPL, yield mixed effects. Alarmingly, 39.4% of reuse

instances present a risk of noncompliance, particularly when license information is

absent or ambiguous.

vi

The second case study investigates the impact of copy-based reuse on LLM

pretraining datasets. We propose an automated source code autocuration technique

that utilizes OSS version histories to detect and filter outdated, buggy, and non-

compliant code. Evaluating this approach on “The Stack” v2 dataset, we find that

17% of code samples have newer versions, with 17% of these updates addressing bugs,

including known vulnerabilities (CVEs). Additionally, we identify serious compliance

risks from misidentified blob origins, which introduce non-permissively licensed code

into training datasets.

Collectively, this work provides novel insights and practical contributions to

understanding and managing copy-based reuse in OSS supply chains. It offers

foundational tools and datasets to advance research, informs policy on software

licensing practices, and proposes methods to enhance the quality and compliance

of AI model training datasets.

vii

Contents

List of Tables xiv

List of Figures xvi

1 Introduction 1

1.1 Background . 3

1.1.1 Reuse in Software Supply Chains 3

1.1.2 Associated Risks . 4

1.2 Research Objectives . 7

1.3 Structure of the Dissertation . 7

1.4 Contributions . 8

1.5 Dissertation Publications . 9

2 Detecting Copy-based Reuse 11

2.1 Introduction . 11

2.2 Contribution . 12

2.3 Methodology . 14

2.3.1 World of Code Infrastructure 14

2.3.2 Project Deforking . 15

2.3.3 Identification of reused blobs 16

2.3.4 Time Complexity Analysis . 20

2.4 Dataset . 22

viii

2.5 Limitations . 23

3 Beyond Dependencies 25

3.1 Introduction . 25

3.2 Social Contagion Theory . 27

3.3 Related Work and Contributions . 29

3.3.1 Related Research Areas . 30

3.3.2 Contributions . 32

3.4 Methodology . 37

3.4.1 RQ1: How extensive is copying in the entire OSS landscape? . 38

3.4.2 RQ2: Is copy-based reuse limited to a particular group of

projects? . 38

3.4.3 RQ3: Do characteristics of the blob affect the probability of

reuse? . 40

3.4.4 RQ4: Do characteristics of the originating project affect the

probability of reuse? . 43

3.5 Results & Discussions . 46

3.5.1 RQ1: How extensive is copying in the entire OSS landscape? . 46

3.5.2 RQ2: Is copy-based reuse limited to a particular group of

projects? . 47

3.5.3 RQ3: Do characteristics of the blob affect the probability of

reuse? . 49

3.5.4 RQ4: Do characteristics of the originating project affect the

probability of reuse? . 59

3.6 Limitations . 71

3.6.1 Internal Validity . 71

3.6.2 External Validity . 72

3.7 Conclusions . 74

ix

4 Survey 76

4.1 Introduction . 76

4.2 Methodology . 78

4.2.1 Survey Content and Questions 78

4.2.2 Sampling Strategy . 79

4.2.3 Survey Design . 80

4.2.4 Thematic Analysis . 81

4.3 Results & Discussions . 82

4.4 Limitations . 90

4.4.1 Survey Response Rate . 90

5 OSS License Identification at Scale 91

5.1 Abstract . 91

5.2 Introduction . 92

5.3 Related Work and Contributions . 94

5.3.1 Comprehensive Identification of License Blobs 94

5.3.2 Broad Scale and Scope of Analysis 94

5.4 Methodology . 95

5.4.1 World of Code Infrastructure 95

5.4.2 License Blob Identification . 95

5.4.3 Project to License Mapping 99

5.4.4 P2L Verification . 100

5.4.5 Complementing Data . 102

5.5 Applications . 102

5.5.1 Ensuring License Compliance 103

5.5.2 Analyzing Licensing Trends and Practices 103

5.5.3 Supporting Ecosystem Studies and Tool Development 103

5.6 Limitations . 104

x

6 The Intersection of Copy-Based Reuse and License Compliance 105

6.1 Abstract . 105

6.2 Introduction . 106

6.3 Related Work and Knowledge Gaps 109

6.3.1 Software Reuse . 109

6.3.2 Open Source Licenses . 112

6.3.3 Open Source License Compliance 113

6.3.4 Our Study vs Prior Work . 115

6.4 Methodology . 117

6.4.1 World of Code Infrastructure 117

6.4.2 Copy-based Reuse Network 118

6.4.3 Potential License Noncompliance 120

6.4.4 Copy-based vs. Dependency-based Reuse 122

6.4.5 Regression Model . 123

6.5 Results and Discussion . 125

6.5.1 RQ1 - Regression Model . 125

6.5.2 RQ2 - Noncompliance . 131

6.6 Limitations . 135

6.6.1 Internal Validity . 135

6.6.2 External Validity . 136

6.7 Conclusions . 137

7 Hidden Vulnerabilities and Licensing Risks in LLM Pre-Training

Datasets 138

7.1 Abstract . 139

7.2 Introduction . 140

7.3 Background . 142

7.3.1 Types of Software Source Code Supply Chains 142

7.3.2 The Promise and Challenges of Large Code Datasets 143

xi

7.3.3 The Stack v2 Dataset . 144

7.3.4 Motivation for This Study . 145

7.3.5 Contributions . 146

7.4 Methodology . 148

7.4.1 Key Concepts . 148

7.4.2 Identifying Potential Noncompliance 149

7.4.3 Sampling . 150

7.5 Results and Discussions . 150

7.5.1 Hidden Vulnerabilities . 150

7.5.2 Potential Noncompliance . 154

7.6 Limitations . 156

7.6.1 Internal Validity . 156

7.6.2 Construct Validity . 158

7.6.3 External Validity . 159

7.7 Conclusions . 159

8 Conclusions & Future Work 161

8.1 Summary of Findings . 161

8.2 Implications . 162

8.2.1 For Developers . 162

8.2.2 For Businesses . 163

8.2.3 For the Open Source Community 163

8.2.4 For Researchers and Educators 164

8.2.5 For OSS Platform Maintainers 164

8.3 Future Work . 165

8.3.1 Code-Snippet Granularity . 165

8.3.2 Dependency-Based Reuse . 166

8.3.3 Upstream Repository . 166

8.3.4 Open Source Software Supply Chain Network 166

xii

8.3.5 Security Vulnerability Detection Tools 167

8.3.6 Compliance Detection Tools 168

8.3.7 Survey . 168

8.3.8 Code Quality Enhancement Tools 168

8.3.9 Package Managers . 169

8.3.10 Autocuration Tool for LLM pretraining Datasets 169

8.3.11 Community Engagement . 169

8.4 Conclusions . 170

Bibliography 173

A License Types 193

Vita 194

xiii

List of Tables

3.1 Basic Statistics of Reuse Instances . 46

3.2 Blob Counts in Reuse Sample . 48

3.3 Blob-level Model - Descriptive Statistics 51

3.4 Blob-level Model - Coefficients . 52

3.5 Blob-level Model - ANOVA Table . 52

3.6 Blob-level - Propensity to Reuse . 55

3.7 Size Difference between Reused and non-Reused Blobs (Positive t value

means larger reused blobs.) . 57

3.8 Project-level Model - Descriptive Statistics 60

3.9 Project-level Model - Spearman’s Correlations Between Predictors . . 60

3.10 Project-level Model - Coefficients . 61

3.11 Project-level Model - ANOVA Table 62

3.12 Percentage of Projects Introducing at Least One Reused Blob 64

3.13 Project-level - Propensity to Reuse 65

3.14 Reused Binary Blobs to Binary Blobs Metric 68

4.1 Survey Participation . 82

4.2 Identified vs. Claimed Creators & Reusers 83

4.3 Likert Scale Questions (Scale 1 to 5) 84

4.4 Identified Reuse Themes . 85

5.1 Potential License Blobs Matching Scores 97

xiv

5.2 Matching Score Samples . 98

5.3 License Detection Confusion Matrix Across Stages 101

6.1 License Reuse Matrix and Potential Noncompliance Scenarios 121

6.2 Regression Model - Descriptive Statistics 124

6.3 ANOVA Table and Regression Coefficients 127

6.4 Reuse Detectable by Dependency Relationship 134

7.1 Counts in the blob sample . 152

7.2 Counts in the new version commit sample 153

7.3 CVE counts in complete smol dataset 153

7.4 Reused blobs and their origin . 155

7.5 Reused blobs with different origins and their licenses 155

xv

List of Figures

2.1 Reuse Identification Data Flow Diagram 19

3.1 Quarterly Reuse Trends . 50

3.2 Blob-level Model - Logistic Regression Odds Ratios 53

3.3 Reused Blobs to Total Generated Blobs Ratio Trend in JavaScript . . 56

3.4 Project-level Model - Logistic Regression Odds Ratios 63

5.1 License Identification Data Flow Diagram 100

6.1 Simple Model - Odds Ratios and 95% Confidence Intervals. 126

6.2 Full Model - Odds Ratios and 95% Confidence Intervals. 128

6.3 Top 10 License Types - 1 Reused Blob, Low Sensitivity 132

6.4 Top 10 License Types - 10 Reused Blobs, Low Sensitivity 133

xvi

Chapter 1

Introduction

Software reuse refers to the practice of developing software systems from existing

software rather than creating them from scratch Krueger (1992). Starting from

scratch may demand more time and effort than reusing pre-existing, high-quality code

that fits the required task. Developers, therefore, opportunistically and frequently

reuse code Juergens et al. (2009). Programming for clearly defined problems often

starts with a search in code repositories, typically followed by careful copying and

pasting of the relevant code Sim et al. (1998).

The fundamental principle of Open Source Software (OSS) lies in its “openness”,

which enables anyone to access, inspect, and reuse any artifact of a project.

This could significantly enhance the efficiency of the software development process.

Platforms such as GitHub increase reuse opportunities by enabling the community of

developers to curate software projects and by promoting and improving the process

of opportunistic discovery and reuse of artifacts. A significant portion of OSS is

intentionally built to be reused, offering resources or functionality to other software

projects Haefliger et al. (2008), thus such reuse can be categorized as one of the

building blocks of OSS. Indeed, developers in the open source community not only

seek opportunities to reuse existing high-quality code, but also actively promote their

own well-crafted artifacts for others to utilize Gharehyazie et al. (2017). Being widely

1

reused not only increases the popularity of the software project and its maintainers

while providing them with job prospects Roberts et al. (2006), but also may bring

new maintainers as well as corporate support.

Most commonly, code reuse refers to the introduction of explicit dependencies

on the functionality provided by ready-made packages, libraries, frameworks, or

platforms maintained by other projects (referred to as dependency-based or black-

box reuse). Such external code is not modified by the developer and, generally,

not committed into the project’s repository but relied upon via a package manager.

Copy-based reuse (or white-box reuse), on the other hand, refers to the case where

source code (or other reusable artifacts) is reused by copying the original code and

committing the duplicate code into a new repository. It may remain the same or be

modified by the developer after reuse. We specifically focus on copy-based reuse in

this study.

While it is generally accepted that programs should be modular Parnas (1972),

with internal implementation details not exposed outside the module, copy-based

reuse does exactly the opposite. OSS’s copy-based reuse, where any source code file

or even a code snippet can be reused in another project, may result in multiple,

possibly modified instances of the same source code replicated across various files and

repositories. These copies may undergo further changes during maintenance, leading

to multiple different versions of the originally identical code existing in the latest

releases of corresponding projects. Unifying such multiplicity of versions in copy-

based reuse to refactor it into a single package that all these projects could depend

upon may not always be a tractable problem.

Moreover, as this reuse process continues across various projects, possibly with

some modifications, data related to the initial design, authorship, copyright status,

and licensing could be lost Qiu et al. (2021). This loss could impede future

enhancements and bug-fixing efforts. It might also diminish the motivation for

original authors who seek recognition for their work and lead to legal complications

for downstream users. These issues impact not only those who reuse the code but

2

also the software dependent on at least one package that involves reused code Feng

et al. (2019).

As the landscape of Open Source Software (OSS) expands, tracing the origins

of source code, identifying high-quality code suitable for reuse, and deciphering

the simultaneous progression of code across numerous projects become increasingly

challenging. This can pose risks, such as the spread of potentially low-quality or

vulnerable code (e.g, orphan vulnerabilities Reid et al. (2022)).

1.1 Background

1.1.1 Reuse in Software Supply Chains

A software supply chain comprises various components, libraries, tools, and processes

used to develop, build, and publish software artifacts. It covers all stages from

initial development to final deployment, including proprietary and open source

code, configurations, binaries, plugins, container dependencies, and the infrastructure

required to integrate these elements. The software supply chain ensures that the

right components are delivered to the right places and at the right times to create

functioning software products. Software reuse is one form of the software supply

chain that enhances efficiency, reduces costs, and mitigates the risks associated with

developing new software from scratch.

In the context of open source software, reuse in software supply chains can be

categorized based on how the open source components are integrated and utilized

within software projects Mockus (2019a, 2022, 2023).

Dependency-based Reuse

Dependency-based reuse involves using open source libraries and packages as depen-

dencies in a project. These dependencies are typically managed through package

managers such as NPM for JavaScript, pip for Python, or Maven for Java. The

3

reliance on these dependencies can introduce vulnerabilities and risks if not properly

managed Yan et al. (2021). A web application using the React library, which in turn

depends on numerous other libraries is an example of reuse in this kind of supply

chain.

Copy-based Reuse

Copy-based reuse is the type of reuse investigated in this work. In copy-based reuse,

code from open source projects is copied directly into a project. For example, a

developer might copy a utility function from an open source repository and integrate

it into their own project. While this approach is quick, it can lead to challenges in

maintaining and updating the copied code. It is essential to track and manage these

copies to ensure they are secure and up-to-date Ladisa et al. (2023).

Knowledge-based Reuse

Knowledge-based reuse involves using knowledge and practices derived from open

source projects without directly copying code or using dependencies. It includes the

adoption of development methodologies, architectural patterns, and best practices

from open source communities. For example, implementing a microservices archi-

tecture inspired by successful open source projects. While not explicitly detailed

by many researchers, the concept of knowledge-based supply chains is inferred from

broader discussions of open source influence on software development practices Zhao

et al. (2021).

1.1.2 Associated Risks

While reuse can potentially reduce development costs, it is not always beneficial.

It could introduce certain risks that might eventually escalate the overall costs of

a project. These risks include, but are not limited to, security vulnerabilities,

4

compliance, and the spread of bugs or low-quality code Jahanshahi and Mockus

(2024); German et al. (2009).

Security

The relationship between security and reuse can possess a dual-nature: a system

can become more secure by leveraging mature dependencies, but it can also

become more vulnerable by creating a larger attack surface through exploitable

dependencies Gkortzis et al. (2021).

In the context of copy-based reuse, extensive code copying can lead to the

widespread dissemination of potentially vulnerable code. These artifacts may reside

not only in inactive projects (that are still publicly available for others to reuse and

potentially spread the vulnerability further), but also in highly popular and active

projects Reid et al. (2022).

Understanding the copy-based supply chain helps in identifying potential security

risks and implementing appropriate safeguards Okafor et al. (2022). Therefore, de-

tecting reused code aids in identifying and consistently patching these vulnerabilities

across all affected systems Ladisa et al. (2023).

Compliance

Many open source licenses come with specific requirements that must be met.

Unintentional reuse of code that is subject to intellectual property (IP) rights or

licensing restrictions can lead to legal complications. Understanding the supply

chain and detecting reused artifacts ensures compliance with licensing agreements

and protects against IP infringements Liang et al. (2022); Zhao et al. (2021).

As software systems evolve, their licenses evolve as well. This evolution can be

driven by various factors such as changes in the legal environment, commercial code

being licensed as free and open source, or code that has been reused from other open

source systems. The evolution of licensing can impact how a system or its parts can

5

be subsequently reused Jahanshahi and Mockus (2024). Therefore, monitoring this

evolution is important Di Penta et al. (2010). However, keeping track of the vast

amount of data across the entire OSS landscape is a challenging task, and as a result,

many developers fail to adhere to licensing requirements An et al. (2017); German

and Hassan (2009).

For example, investigating a subset of codes reused in the Stack Overflow

environment revealed an extensive number of potential license violations An et al.

(2017). Even when all license requirements are known, the challenge of combining

software components with different and possibly incompatible licenses to create a

software application that complies with all licenses, while potentially having its own,

persists and is of great importance German and Hassan (2009). When individual files

are reused, licensing information may be lost, and the findings of our study might

suggest approaches to identify and remediate such problems.

Quality

Ensuring that all components of the supply chain meet quality standards is essential

for the reliability and performance of the final product Boughton et al. (2024). Copied

code that has not been thoroughly vetted and tested can introduce bugs and defects.

By identifying and evaluating such reused code, organizations can ensure that it meets

their quality standards Mockus (2019a).

Code reuse is not only assumed to escalate maintenance costs under specific

conditions, but it is also seen as prone to defects. This is because inconsistent

modifications to duplicated code can result in unpredictable behavior Juergens et al.

(2009). Additionally, failure to consistently modify identifiers (such as variables,

functions, types, etc.) throughout the reused code can lead to errors that often bypass

compile-time checks and transform into hidden bugs that are extremely challenging

to detect Li et al. (2006).

Apart from the bugs introduced through code reuse, the source code itself could

have inherent bugs or be of low quality. These issues can propagate similarly to how

6

security vulnerabilities spread. The patterns of reuse identified in this study could

potentially suggest strategies to leverage information gathered from multiple projects

with reused code, thereby reducing such risks.

1.2 Research Objectives

This dissertation investigates the phenomenon of copy-based reuse in OSS supply

chains, addressing the following core research questions:

1. How prevalent is copy-based reuse in OSS projects?

2. Can automated methods be developed to detect and analyze copy-based reuse

at scale?

3. What are the motivations and practices of developers who engage in copy-based

reuse?

4. How does copy-based reuse impact software licensing and compliance?

5. What are the broader implications of copy-based reuse in machine learning and

large-scale software security?

To address these questions, this research introduces a novel method for detecting

and analyzing copy-based reuse at scale. By applying this method to real-world OSS

projects, this dissertation provides insights into how developers reuse code, the risks

associated with such practices, and the potential solutions to improve its reliability.

1.3 Structure of the Dissertation

This dissertation is divided into two main parts: the first focuses on the understanding

and analysis of copy-based reuse, while the second explores its applications.

Specifically, in the first part:

7

• Chapter 2 details the methodology for constructing a large-scale dataset

that identifies copy-based reuse in OSS projects. It describes data collection,

preprocessing, and validation techniques.

• Chapter 3 presents an in-depth analysis of copy-based reuse, examining its

prevalence, common practices, and patterns in the OSS ecosystem.

• Chapter 4 investigates developer perspectives through a survey, exploring their

motivations, challenges, and practical considerations of copy-based reuse.

The second part of the dissertation applies the proposed method to practical

challenges:

• Chapter 5 explores how copy-based reuse impacts software licensing and

presents an automated method to detect licensing inconsistencies across OSS

projects.

• Chapter 6 analyzes noncompliance issues, examining how copy-based reuse

contributes to legal and security risks in OSS supply chains.

• Chapter 7 extends the analysis to machine learning, investigating how copy-

based reuse affects large-scale pretraining datasets and the implications for

security and compliance in AI models.

Finally, Chapter 8 concludes the dissertation by summarizing key findings,

discussing limitations, and outlining future research directions.

1.4 Contributions

Understanding and addressing copy-based reuse is critical for ensuring sustainable

and legally compliant OSS development. This dissertation provides a systematic

framework for analyzing this phenomenon, shedding light on its implications for

software supply chains, licensing, and security. The findings have significant relevance

8

for software developers, legal experts, and AI practitioners, guiding best practices

for software reuse in an increasingly interconnected digital world. Specifically, this

dissertation makes the following contributions to the field of software engineering and

open-source software research:

1. A Large-Scale Dataset for Copy-Based Reuse Detection: The first

dataset of its kind to systematically track copy-based reuse across OSS projects.

2. Empirical Analysis of Copy-Based Reuse: A comprehensive study of the

prevalence, patterns, and developer motivations behind this practice.

3. A Large-Scale Dataset for OSS License Identification: The first dataset

of its kind to systematically find license files with minor variations and map

them to projects in which they reside across OSS.

4. Automated Methods for Licensing and Compliance Detection: Novel

techniques for detecting license noncompliance in OSS.

5. Security Implications in Machine Learning: An exploration of how copy-

based reuse introduces vulnerabilities in AI training datasets.

6. Policy and Tooling Recommendations: Practical suggestions for OSS

communities, developers, and policymakers to improve compliance and security

in software reuse.

1.5 Dissertation Publications

Each chapter of this dissertation corresponds to a separate published or submitted

paper, with the exception of Chapters 3 and 4, which are published as a single paper.

Chapter 6 has been submitted for publication but has not yet been accepted. The

copyright for these publications is held by the respective publishers, and reproduction

in this dissertation is in accordance with their policies.

Below are the details of these publications:

9

• Chapter 2: Jahanshahi, M. & Mockus, A. (2024, April). ”Dataset: Copy-

based Reuse in Open Source Software.” In 2024 IEEE/ACM 21st International

Conference on Mining Software Repositories (MSR) (pp. 42-47). IEEE.

• Chapters 3 & 4: Jahanshahi, M., Reid, D., & Mockus, A. ”Beyond

Dependencies: The Role of Copy-Based Reuse in Open Source Software

Development.” Accepted in ACM Transactions on Software Engineering and

Methodology (TOSEM).

• Chapter 5: Jahanshahi, M., Reid, D., McDaniel, A., & Mockus, A. ”OSS

License Identification at Scale: A Comprehensive Dataset Using World of

Code.” Accepted in IEEE/ACM 22nd International Conference on Mining

Software Repositories (MSR 2025). IEEE.

• Chapter 6: Submitted to a conference, currently under review.

• Chapter 7: Jahanshahi, M. & Mockus, A. ”Cracks in The Stack: Hidden

Vulnerabilities and Licensing Risks in LLM Pre-Training Datasets.” Accepted in

Second International Workshop on Large Language Models for Code (LLM4Code

2025).

Across all these publications, I was responsible for the conceptualization of the

research, data collection, analysis, and manuscript writing. My co-authors, David

Reid and Adam McDaniel, contributed to data validation in some cases. Dr. Audris

Mockus, as my advisor, provided guidance and mentorship throughout the entire

research and publication process.

10

Chapter 2

Detecting Copy-based Reuse

Disclosure Statement

A version of this chapter was originally published as Jahanshahi and Mockus (2024):

Mahmoud Jahanshahi and Audris Mockus. 2024. Dataset: Copy-based Reuse

in Open Source Software. In Proceedings of the 21st International Conference on

Mining Software Repositories (MSR ’24). Association for Computing Machinery, New

York, NY, USA, 42–47.

Available at: https://doi.org/10.1145/3643991.3644868

This material is included in accordance with ACM’s policies on thesis and

dissertation reuse. © 2024 Copyright held by the owner/author(s). Publication

rights licensed to ACM.

2.1 Introduction

This dataset seeks to encourage the studies of copy-based reuse by providing copying

activity data that captures whole-file reuse in nearly all OSS. To accomplish that, we

develop approaches to detect copy-based reuse by developing an efficient algorithm

that exploits World of Code infrastructure: a curated and cross referenced collection

11

https://doi.org/10.1145/3643991.3644868

of nearly all open source repositories. We expect this data will enable future research

and tool development that support such reuse and minimize associated risks.

A better understanding of code copying practices may suggest future research on

approaches or tools that make productivity improvements even greater while, at the

same time, helping to minimize inherent risks of copying. Specifically, we aim to

provide a copy-based reuse dataset to enable further analysis of aspects concerning

the extent and the nature of reuse in OSS and to provide information necessary to

investigate approaches that support this common activity, make it more efficient, and

safer.

First, we create a measurement framework that tracks all versions of source code

(we refer to a single version as a blob in keeping with the terminology of the version

control system git) across all repositories. The time when each unique blob b was

first committed to each project P is denoted as tb(P). The first repository Po(b) =

ArgMinP tb(P) is referred to as the the originating repository for b. Next, copy

instances are identified via projects pairs: a project with the originating commit and

the destination project with one of the subsequent commits producing the same blob

(Po(b), Pd(b)).

2.2 Contribution

To the best of our knowledge no curation system exists at the level of a blob, nor is

there an easy way for anyone to determine the extent of copy-based reuse at that level

and the introduced reuse identification methods (such as Kawamitsu et al. (2014a))

find reuse between given input projects and are not easily scalable to find reuse

across all OSS repositories. The methods we use to identify reuse could, therefore,

provide a basis for tools that expose these hard-to-obtain yet potentially important

phenomenon.

Our dataset has two important aspects. First, we present the copying activity

at the whole open source software ecosystem level. Previous provided datasets

12

normally focus on a specific programming language (e.g. Java as in Janjic et al.

(2013)) and the data used in previous works investigating copying have as well mostly

concentrated on a small subset of a specific community (e.g. Java language, Android

apps, etc.) Heinemann et al. (2011); Haefliger et al. (2008); Mockus (2007); Hanna

et al. (2012); Fischer et al. (2017); Sojer and Henkel (2010) or sampled from a single

hosting platform (e.g. GitHub) Gharehyazie et al. (2017, 2019). Even research more

comprehensive in programming language coverage Lopes et al. (2017) considered only

a subset of programming languages and more importantly, used convenience sampling

by excluding less active repositories Hata et al. (2021c,a). Furthermore, almost all

research only focus on code reuse whereas our dataset tracks all artifacts whether they

are code or other reusable development resources, such as images or documentation.

Second, copy-based reuse has not been as extensively investigated as the dependency-

based reuse, e.g., Cox (2019); Frakes and Succi (2001); Ossher et al. (2010). Copy-

based reuse is, potentially, no less important, but much less understood form of reuse.

In fact, most of the efforts in copy-based reuse domain are focused on clone detection1

tools and techniques Roy et al. (2009); Ain et al. (2019); Jiang et al. (2007); Hanna

et al. (2012); White et al. (2016), not on the properties of files that are being reused or

projects that produce or reuse artifacts. Clone detection tools and techniques usually

take a snippet of code as input and then try to find similar code snippets in a target

directory or an specific domain Inoue et al. (2021); Svajlenko et al. (2013) whereas in

our dataset, we are finding all instances of reuse in nearly entirety of OSS.

The description and the curation methods of this dataset has not been published

before. Furthermore, although the dataset is now publicly available through WoC2,

to the best of our knowledge, the data has not been used by authors or others in any

published paper yet.

1identification of, often, relatively small snippets of code within a single or a limited number of
projects

2It has been made available only recently

13

2.3 Methodology

We start by briefly outlining World of Code infrastructure we employed to create our

dataset and then present the methods used to identify instances of copying.

2.3.1 World of Code Infrastructure

Finding duplicate pieces of code and all revisions of that code across all open

source projects is a data and computation intensive task due to the vast number

of OSS projects hosted on numerous platforms. Previous research on code reuse

has, therefore, typically looked at a relatively small subset of open source software

potentially missing the full extent of copying that could only be obtained with a nearly

complete collection. World of Code (WoC) Ma et al. (2019, 2021) infrastructure

attempts to remedy this by, on a regular basis, discovering publicly available new and

updated version control repositories, retrieving complete information (or updates)

in them, indexing and cross-referencing retrieved objects, conducting auto-curation

involving author aliasing Fry et al. (2020) and repository deforking Mockus et al.

(2020), and provides shell, Python and web APIs to support creation of various

research workflows. The source code version control systems in WoC are collected

from hundreds of forges and, after complete deduplication, takes approximately

300TB of disk space for the most recent snapshot we use for our dataset3. The

specific objective of WoC is to support research on three kinds of software supply

chains Ma (2018): technical dependency (traditional dependency-based package

reuse), copy-based reuse, and knowledge flows Zhuge (2002); Ghobadi (2015); Lyulina

and Jahanshahi (2021) (developers working on, and learning about, projects and then

using that knowledge in their work on other projects).

WoC’s operationalization of copy-based supply chains is based on mapping blobs

(versions of the source code) to all commits and projects where they have been created.

This implies that copy is detected only if the entire file is copied intact without

3version V

14

any modifications. Because of that, our dataset includes only the whole-file copying

activity. This also means that different versions of the originally same file will be

considered different objects since they are different blobs.

Specifically, WoC uses git object indexing via sha1 signature so that each

association has to store only the sha1 of the object (in this case blob), and the

actual content of each object is stored exactly once. When objects are extracted

from a repository, WoC associates all extracted commits with that repository (the so

called c2p map). Since a commit points to a tree and to its parent commit objects,

the remaining objects in a repository can be easily derived by traversing versions and

trees. WoC also computes the association between commits and blobs created by a

commit (new versions of existing files or entirely new files) and makes it available via

c2fbb map. The map lists all the instances where a blob corresponding to one of the

files in the repository changed or a new file was created. In the former case, the blob

corresponding to an earlier version of the file is also provided, making it possible to

trace back or forth for earlier or newer versions of a blob.

Commits have attributes, such as time of the commit and author of the commit

and these attributes can be accessed via c2dat map in WoC. A few more maps

provided by WoC are also used in creating this dataset.

2.3.2 Project Deforking

To understand reuse across the entirety of open source software, it is important

to identify distinct software projects. Git commits are based on a Merkle Tree

structure, uniquely identifying modified blobs, and therefore, shared commits between

repositories typically indicate forked repositories. As a distributed version control

system (VCS), Git facilitates cloning (via git clone or the GitHub fork button),

resulting in numerous repositories that serve as distributed copies of the same project.

While this feature enables distributed collaboration, it also leads to many clones of

the original repository Mockus et al. (2020).

15

To differentiate copy-based reuse from forking, we use project deforking map p2P

provided in WoC Mockus et al. (2020). Using community detection algorithms, this

map provides a clearer picture of distinct projects by linking forked repositories p to

a single deforked project P based on shared commits.

An advantage of this map over using the fork data from platforms like GitHub

is that WoC’s p2P map is based on shared commits, providing higher recall by not

missing forks that did not occur through GitHub’s forking option but rather through

cloning the repository. Additionally, forks and clones hosted on different platforms

cannot be traced easily, but the WoC map is platform-independent and does not have

this constraint. Moreover, some forks may diverge significantly from the original

repository but are still considered forks by hosting platforms. WoC’s deforking

algorithms use community detection via shared commits. If forks diverge substantially

via maintenance after forking, the community detection algorithm would recognize

them as distinct projects, which reduces false positives and increases precision.

Whenever we mention “project” in our paper, we are actually referring to a

“deforked project” as defined here. This ensures that our discussions about reuse are

based on unique instances of software development projects rather than duplicated

efforts through forks.

2.3.3 Identification of reused blobs

Despite the key relationships available in WoC, we have to resolve several critical

obstacles. We first need to identify the first time tb(P) each of the nearly 16B blobs

landed in each of the almost 108M projects. We aim to minimize memory use and be

able to run computations in parallel. First, we join c2fbb map4 (that lists for each

commit all the blobs it creates) with c2dat map (to obtain the date and time of the

commit) and then with the c2P (which itself is the result of joining c2p with p2P

maps) map to identify all projects containing that commit. WoC has each of the

4see https://github.com/woc-hack/tutorial for more information about WoC map naming
convention

16

three maps split into 128 partitions5 requiring us to run a sequence of two Unix join

commands (first to join c2fbb and c2dat and then the result of that join with the c2P

map) on each of the 128 partitions in parallel. The result is a new c2Ptb (commit,

project, time, and blob) map stored in 128 partitions (ci, P, t, b) : i = 0, . . . , 127.

To create the timeline for each blob we need to sort all that data by blob, time,

and project. The list has hundreds of billions of rows (20B blobs often occurring in

multiple commits and commits sometimes residing in multiple projects). We thus

needed to break down the problem into smaller pieces to solve within a reasonable

time frame. Specifically, we first split each partition (ci, P, t, b) based on the blob

into 128 sub-partitions, thus obtaining 128x128 partitions resulting from the original

partitioning by commits and the secondary one by blobs (bj, t, P, ci) : i, j = 0, . . . , 127.

We then sort each of the 128x128 files by blob, time, and project (using Unix sort

parameterized to handle extremely large files) and drop all but the first commit

creating the blob for each project6. In the next step we merge 128 commit-based

partitions for each blob-based partition using Unix sort with a merge option and drop

all but the first commit of the blob to a project. Resulting in 128 blob-based partitions

(b2tP map) (bj, t, P) : j = 0, . . . , 127 where we have only blob, time, and the deforked

project that contain our desired timeline tb(P). Finally, the blob timelines are used to

identify instances of copying (tb(Po), tb(Pd)) (or, in the terminology of WoC, Ptb2Pt

maps where the first project is originating7 and the second project copied the blob

– the blob was created at a later time). To accomplish this we first create a list of

blob origination projects and times. A sweep over b2tP by keeping only the first

time and the project associated with each b and excluding blobs associated with

a single project8 produces (bj, t, Po) : j = 0, . . . , 127. We also store never reused

5Partitions are enumerated using the first seven bits of the sha1 representing the key — in this
case commit — in order to obtain partitions of similar size. Each partition is a file sorted by the
key and compressed.

6A blob is often copied within a repository.
7See section 2.5 for the limitations in identifying the originating project.
8Over 90% of the blobs belong to a single project, so excluding them reduces storage of the

relations created downstream.

17

blobs (bjnc, t, Po) : j = 0, . . . , 127 (ones that are associated with only one project

as identified during the sweep mentioned above). (bj, t, Po) partitions containing

only originating project are then joined with (bj, t, P) to obtain the cross-product

((bj, to, Po, td, Pd) : j = 0, . . . , 127, Po ̸= Pd). Each of the resulting 128 partitions are

then split via project name9, into 128 sub-partitions and each sub-partition is then

sorted by the originating project: ((P i
o, to, Pd, td, b

j) : i, j = 0, . . . , 127), then merging

over blob-based partitions belonging to a single project-based partition. Resulting

Ptb2Pt map contains all instances of blob copying: (tb(P
i
o), tb(Pd)) and is stored in

128 partitions i = 0, . . . , 127 with each workflow step described above capable of

being run as 128 parallel processes. The data flow digram of reuse identification is

shown in Figure 2.1.

The initial step was to pinpoint the first instance, denoted as tb(P), when each

of the approximately 16 billion blobs appeared in each of the almost 108 million

projects. To this goal, first the c2fbb map10 (which is the result of diff on a commit:

commit file, blob, old blob and lists all blobs created by each commit) was joined with

the c2dat map (full commit data) to obtain the date and time of each commit. The

result was then joined with the c2P map (commit to project) to identify all projects

containing that commit.

The result is a new c2btP map (commit to blob,, time, and Project). To create the

timeline for each blob, all that data was sorted by blob, time, and project resulting

in b2tP map (b, t, P) where we have only blob, time, and the deforked project that

contain our desired timeline tb(P).

Finally, the blob timelines11 were used to identify instances of reuse (tb(Po), tb(Pd))

or Ptb2Pt map, where the first project is the originating project12 and the second

9We use the first seven bits of the name’s FNV digest Noll (2012) as it is faster and randomizes
better short strings than sha1.

10See https://github.com/woc-hack/tutorial for more information about WoC map naming
convention

11All but the first commit time creating the blob for each project were dropped as a blob is often
reused within a repository.

12See section 2.5 for the limitations in identifying the originating project.

18

https://github.com/woc-hack/tutorial

Figure 2.1: Reuse Identification Data Flow Diagram

19

project is the destination project of the reused blob, meaning the blob was created

at a later time in this project. This resulting Ptb2Pt map contains all instances of

blob reuse. The data flow of reuse identification is shown in Figure 2.1.

2.3.4 Time Complexity Analysis

To evaluate the complexity and time requirements of our methodology for identifying

reuse, we analyze the time complexity of each step and provide a benchmark for

execution time on a typical computer setup. The overall time complexity is dominated

by the sorting operations involved in processing the large maps. Data preparation

and joining involve merging the precalculated maps in WoC, namely the c2fbb, c2P,

and c2dat maps. Since these maps are already sorted and split into 128 partitions,

we can join them with a complexity of 128 × O(l + m + n), where l, m, and n

are the number of rows in the maps respectively. We then drop the commit hashes

and sort the joined b2tP map based on blob, time, and project, which is the most

computationally intensive step, with a complexity of O(n log n), where n is the total

number of rows in the b2tP map. Identifying reuse instances, given that the data

is already sorted by blob, has a complexity of O(n), where n is the total number of

copy instances.

Using a high-performance workstation as a benchmark (8-core processor at 3.5

GHz, 128 GB RAM, 2 TB SSD), we calculate the execution time for each step.

Data preparation and joining, with a linear-time merge, primarily involve reading

and writing large files. With a sequential read/write speed of approximately 500

MB/s for SSDs, joining the maps (total size around 128 billion rows) is expected

to take roughly 1-2 hours. Sorting the created b2tP map, which requires external

sorting of about 74 billion rows, necessitates multiple passes over the data. Based on

empirical data, a modern external sorting algorithm with 8 cores can handle around

0.5 billion rows per hour. Hence, sorting this map would take approximately 148

hours. Identifying reuse instances, involving efficient I/O operations, is estimated to

20

take 4-6 hours. In total, the entire process is estimated to take approximately 153-156

hours, or about 6.5 days.

Detecting code reuse in finer granularity than blob-level, such as through syntax

tree parsing or text similarity techniques, would offer a more comprehensive view of

code reuse. However, these methods involve several computational challenges and

resource constraints, making them impractical for our study.

Parsing the abstract syntax tree (AST) for each file to detect structural similarities

involves several computational steps. First, each file must be parsed into its AST

representation, which itself is an O(n) operation where n is the total number of unique

blobs. For our dataset of 16 billion blobs, this parsing step alone would be extremely

resource-intensive. Following parsing, comparing each AST to identify potential reuse

instances would require pairwise comparisons. The pairwise comparison complexity

is O(n2), resulting in an infeasible O((16× 109)2) complexity.

Text similarity measures on the other hand, such as Levenshtein distance or cosine

similarity, involve comparing each blob’s contents with every other blob. These

methods typically operate with a complexity of O(n2) for each pair of files, again

resulting in an infeasible O((16 × 109)2) complexity. Even with optimizations like

locality-sensitive hashing or other approximation techniques, the scale of the data

renders this approach impractical.

Given the significant computational complexity and resource requirements, de-

tecting code reuse at a finer granularity than blob-level is not feasible for our study.

Instead, we have chosen to focus on blob-level reuse detection, which provides a

practical and scalable solution. While this approach is limited to detecting exact

file copies, it ensures that the analysis remains within the bounds of available

computational resources and time constraints, thereby enabling a thorough and

efficient examination of code reuse in the OSS landscape.

21

2.4 Dataset

The created tables are stored on WoC servers. Each line of this dataset includes the

originating repository (deforked repository), the timestamp of first commit including

the blob in originating project, blob sha1, destination project (deforked repository)

and the timestamp of first commit including the blob in destination project, all

separated by semicolon.

format :

o r i g i n a t i n g repo ; timestamp ; blob ;

d e s t i n a t i on repo ; timestamp

example :

MeigeJia ECE −364;1514098666;

010000001 b502dcb0fc8e89d4f854979c93503f8 ;

HaoboChen1887 Purdue ;1598024605

This means blob 010000001b502dcb0fc8e89d4f854979c93503f8 was first seen in

MeigeJia ECE-364 repository at 1466402956 (Jun 20 2016) and was reused by

HaoboChen1887 Purdue at 1551632725 (Mar 03 2019). Slash symbols are substituted

with underscores in WoC repository naming convention. That is, MeigeJia ECE-364

means github.com/MeigeJia/ECE-364. Furthermore, the project is hosted on GitHub

unless the domain is mentioned at the beginning of the project name.

To get access to WoC infrastructure, the WoC registration form should be filled.

This form can be found on WoC tutorial page13. There are no requirements for regis-

tration and any researcher can fill the form with a ssh key pair14. Upon gaining access,

the data can be easily found and read at /da? data/basemaps/gz/Ptb2PtFullVX.s

with X ranging from 0 to 127 based on the 7 bits in the first byte of the blob sha1.

The ”V” in the name indicates that this dataset is based on WoC version V15(the

latest at the time of this work).

13https://github.com/woc-hack/tutorial
14https://www.ssh.com/academy/ssh/public-key-authentication
15https://bitbucket.com/swsc/overview

22

https://github.com/woc-hack/tutorial
https://www.ssh.com/academy/ssh/public-key-authentication
https://bitbucket.com/swsc/overview

2.5 Limitations

Blob-level reuse Our dataset is at entire blob reuse granularity and does not

capture the reuse of pieces of code that form only a part of the file. Thus blob-level

reuse (despite being common) does not represent the full extent of all code reuse.

Notably, different versions of the same file would have different blobs as even if

two versions differ by only one character, they still produce different file hashes (are

different blobs). Thus blob reuse is not the same as file reuse. File reuse is, however,

difficult to define precisely as it is not clear what files should be considered equivalent

in distinct projects.

Commit time The reuse timeline (and identifying the first occurrence) of a blob

is based on the commit timestamp. This time is not always accurate as it depends

on the user’s system time. We used suggestions by Flint et al. (2021a) and other

methods to eliminate incorrect or questionable timestamps. We also used version

history information to ensure time of parent commits do not postdate that of child

commits.

Originating repository The accuracy of origination estimates can be increased

by the completeness of data. Even if we assume that the WoC collection is complete,

some blobs may have been originated in a private repository and then copied to a

public repository, i.e., the originating repository in WoC may not be the actual creator

of the blob. For example, a 3D cannon pack asset16 was committed by 38 projects

indexed by WoC. That asset, however, was created earlier in Unity Asset Store.

Copy instance A unique combination of blob, originating project and destination

project may not always reflect the actual copy pattern because some destination

projects may have copied the blob not from the originating project (e.g., for projects

O, A, and B in blob creation order, project B may copy either from project O or A).

16https://assetstore.unity.com/packages/3d/props/weapons/stylish-cannon-pack-174145

23

Also, some blobs are not copied but are created independently in each repository, e.g,

an empty string, or a standard template automatically created by a common tool.

We use the list of such blobs provided by WoC Ma et al. (2019) to exclude them from

all our calculations.

As was described in each paragraph, we took all the necessary steps to minimize

the potential negative impact of these limitations and validated the curated data

extensively to ensure its reliability within the boundaries of limitations.

24

Chapter 3

Beyond Dependencies

Disclosure Statement

A version of this chapter was originally published as Jahanshahi et al. (2024b):

Mahmoud Jahanshahi, David Reid, and Audris Mockus. 2025. Beyond

Dependencies: The Role of Copy-Based Reuse in Open Source Software

Development. In ACM Transactions on Software Engineering and Methodology

(TOSEM). Just Accepted (January 2025).

Available at: https://doi.org/10.1145/3715907

This material is included in accordance with ACM’s policies on thesis and

dissertation reuse. © 2025 Copyright held by the owner/author(s). Publication

rights licensed to ACM.

Replication package available at: https://zenodo.org/records/14743941

3.1 Introduction

In this chapter, our aim is to enable future research and tool development to increase

efficiency and reduce the risks of copy-based reuse. We seek a better understanding

of copy-based reuse by measuring its prevalence and identifying factors affecting the

propensity to reuse. To identify reused artifacts and trace their origins, our method

25

https://doi.org/10.1145/3715907
https://zenodo.org/records/14743941

exploits World of Code infrastructure. We begin with a set of theory-derived factors

related to the propensity to reuse, sample instances of different reuse types, and survey

developers to better understand their intentions. Our results indicate that copy-based

reuse is common, with many developers being aware of it when writing code. The

propensity for a file to be reused varies greatly among languages and between source

code and binary files, consistently decreasing over time. Files introduced by popular

projects are more likely to be reused, but at least half of reused resources originate

from “small” and “medium” projects. Developers had various reasons for reuse but

were generally positive about using a package manager.

Despite the sustained attention and potential benefits and risks associated with

reuse, the exact scale, prevalent practices, and possible negative impacts related to

OSS-wide reuse have not been thoroughly explored. This is primarily due to the

formidable task of tracking code throughout the entirety of OSS Jahanshahi and

Mockus (2024).

Gaining a more comprehensive understanding of reuse practices could guide

future research towards developing methods or tools that enhance productivity

while mitigating the inherent risks associated with reuse. Specifically, we aim to

quantify several aspects concerning the extent and nature of reuse in OSS, providing

information necessary to investigate approaches that support this common activity,

making it more efficient and safer.

We use a measurement framework created by Jahanshahi and Mockus (2024) that

tracks all versions of project artifacts, referred to as blobs1, across all repositories.

In this approach, the first time each blob is committed to a repository is identified.

The (repository, blob) tuples are then sorted based on the commit time of the first

appearance of that unique blob in the repository. The repository with the earliest

commit time is identified as the originating repository, and the person who made that

commit is recognized as the creator of the blob. Reuse instances are then identified

1In alignment with the terminology used in the Git version control system, we use the term
“blob” to refer to a single version of a file.

26

by pairing the originating repository with any subsequent repositories that commit

the same blob.

Our work investigates how much and what kind of the whole-file reuse happens

at the scale of OSS, with findings that could help guide future research and tool

development to support this common but potentially risky activity. First, we show

how the existing studies, by ignoring “small” and inactive projects, miss almost

half of the code reused even by the “largest” and most active projects. There is

a necessity for more in-depth study to fully comprehend how these abundant yet

unseen “dark matter” projects contribute to reuse activity. Second, we theorize

about and investigate empirically the properties of artifacts and originating projects

that influence the likelihood of file reuse, addressing a key question that previous

work, which has predominantly focused on copy detection techniques, has missed.

To investigate historic reuse trends, we also introduce a time-limited measure of

reuse. Our findings reveal several surprising patterns showing how copying varies

with the programming language, properties of a blob, and originating projects. These

insights could help prioritize and articulate further research and tool development that

supports the most common reuse patterns.

In summary we ask the following research questions:

RQ1 How extensive is copying in the entire OSS landscape?

RQ2 Is copy-based reuse limited to a particular group of projects?

RQ3 Do characteristics of the blob affect the probability of reuse?

RQ4 Do characteristics of the originating project affect the probability of reuse?

3.2 Social Contagion Theory

Reusing code is an instance of technology adoption. One of the key questions we

want to ask is what may affect the propensity of adopting (copying) a blob. Social

27

Contagion Theory (SCT) Christakis and Fowler (2013) is a widely used theory for

examining dynamic social networks and human behavior in the context of technology

adoption Angst et al. (2010); Samadi et al. (2016). In the field of software engineering,

it has been used to explain how developers select software packages Ma et al. (2020).

We are using SCT to theorize about the dynamics of code reuse by conceptualizing

it in terms of exposure, infectiousness, and susceptibility. SCT helps us frame our

research questions by providing a structured way to analyze how code reuse spreads

within the open source community. Specifically, we explore how developers become

aware of reusable code, the inherent qualities of the code that make it more likely to be

reused, and the characteristics of projects or developers that make them more likely to

adopt reusable code. These dimensions guide the formation of our research questions,

enabling us to systematically investigate the factors influencing reuse activity in open

source software. The key value of SCT in our case is to help articulate factors affecting

copy propensity via three dimensions:

1. Exposure. Exposure is an intuitive notion that in order to copy an artifact, you

first have to learn about and find it.

2. Infectiousness. Infectiousness is the property of the artifact that affects its

propensity to be reused.

3. Susceptibility. Susceptibility is the property of the destination project or

developer that reflects how much benefit they would (or believe they would)

derive by reusing the artifact.

First, for a blob (infectious agent) to be reused, a developer needs to become

aware of it. In other words, it needs to be exposed to the open source community

(population). Social coding platforms such as GitHub provide various crowd-sourced

signals of project popularity. Developers may consider these characteristics of project

popularity or health when choosing what resource to use Frakes and Terry (1996);

Lozano-Tello and Gómez-Pérez (2002). These considerations suggest that developers

28

are more likely to be exposed to code in more popular or active projects. Therefore,

we used project properties as a proxy for the likelihood of awareness. This primarily

addresses RQ2 and RQ4 in this chapter.

The second concept of SCT, infectiousness, means that a highly virulent infectious

agent is more likely to spread. In our context, this can be measured by the

characteristics of the blob itself, corresponding to RQ3. Most of the literature on

reuse has primarily focused on this aspect of the reused resource.

The final concept in our theory is susceptibility, which refers to the vulnerability of

the target population to the infectious agent. In our case, this can be approximated

by the characteristics of the target project (or author) that reuses the blob. For

example, the use value, or how much the blob is needed in the project that copies it.

These characteristics are, by definition, highly specific to the target project, making

them more challenging to measure. We aim to shed more light on this aspect in

chapter 4.

3.3 Related Work and Contributions

While the benefits and risks associated with code reuse seem tangible, the extent and

types of reuse across the entirety of OSS remain unclear. To prioritize these risks and

benefits, and explore methods to minimize or maximize them respectively, we employ

the approach introduced in our previous work Jahanshahi and Mockus (2024). This

method allows us to track copy-based reuse on a scale commensurate with the vast

size of OSS. The scope of copying activity is not fully encompassed by previous studies

based on convenience samples, as we will illustrate in the results section.

We are not aware of any other curation system that operates at the level of a blob

or finer granularity, nor is there an easy way to determine the extent of OSS-wide copy-

based reuse at that level. Methods for identifying reuse, such as the one introduced

by Kawamitsu et al. (2014b), are designed to find reuse between specific input

projects and do not easily scale to detect reuse across all OSS repositories Jahanshahi

29

and Mockus (2024). The methods we use to identify and characterize reuse could,

therefore, serve as a foundation for tools that expose this difficult-to-obtain yet

potentially important phenomenon Jahanshahi and Mockus (2024). We acknowledge

that the actual extent of reuse is most likely much higher than what we find at

blob-level granularity. Nevertheless, we believe the results we present will still be

insightful, especially as the lower bound for the extent of copy-based reuse activity

in the entirety of OSS.

We first differentiate copy-based reuse from related fields and then discuss our

contributions.

3.3.1 Related Research Areas

To comprehensively understand copy-based reuse, it is essential to discuss two

closely related fields: the clone detection and the clone-and-own practice. Following

discussion will focus on differentiating copy-based reuse from dependency-based reuse,

clone detection, and clone-and-own practices, situating these within the broader

context of code reuse literature.

Code Reuse Analysis

Code Reuse Analysis encompasses techniques and practices that aim to maximize

the efficiency and reliability of software development by leveraging existing code.

Techniques such as static analysis, dependency analysis, and repository mining help

identify reusable components within a codebase Koschke (2007). Through these

methods, code reuse analysis seeks to reduce redundancy and enhance maintainability.

Frakes and Kang (2005) show that systematic code reuse can significantly reduce

development time and costs while improving software quality.

30

Clone Detection

Clone Detection is a technique within code reuse analysis for identifying similar

or identical code fragments in a codebase. This process involves using tools to

detect exact or slightly modified duplicates, which can then be refactored into

reusable components. Techniques range from textual and token-based methods to

more advanced semantic and abstract syntax tree (AST) analyses Roy and Cordy

(2007); Svajlenko and Roy (2014). These methods focus on identifying code clones

within constrained contexts, often limited to small code snippets within a few

projects Svajlenko and Roy (2015). Clone detection helps in managing redundancy

and maintaining code quality by highlighting areas where code can be simplified

and reused Roy and Cordy (2007). The effectiveness of clone detection tools has

been validated in various studies, showing significant improvements in software

maintainability Kapser and Godfrey (2008).

Clone and Own

Clone and Own is a practice where existing software components are copied and

modified to meet new requirements. This approach is often utilized in product

line engineering and situations where rapid development is important. Clone-

and-own allows developers to quickly adapt existing solutions but can lead to

maintenance challenges due to the proliferation of similar, independently maintained

code fragments Krueger (2001); Rubin and Chechik (2013). This practice, common

in open source development, involves significant modifications and independent

maintenance, often leading to divergent development paths German (2002); Blincoe

et al. (2016).

While clone detection focuses on technical identification of code snippets, the

clone-and-own practice highlights the importance of customization and independent

management of forked projects. As the clone-and-own practice involves both technical

customization and significant social factors, such as community engagement and

31

governance models, understanding these aspects is important for managing forked

projects German (2002); Blincoe et al. (2016). Although clone-and-own supports

the purpose of code reuse by facilitating quick adaptation, it often results in code

duplication, complicating long-term maintenance. Research has shown that clone-

and-own is prevalent in practice due to its simplicity and effectiveness in the short

term Antoniol et al. (2004).

Copy-based Reuse

Copy-based reuse, a form of code reuse, involves copying existing code and potentially

modifying it for use in new contexts. This method allows for rapid development

but shares the maintenance challenges associated with clone-and-own, as duplicated

code must be managed across different parts of the software. In summary, code

reuse analysis encompasses techniques like clone detection to manage redundancy

and practices like clone-and-own to adapt existing code for new purposes. While

clone detection and code reuse analysis share the goal of improving code quality

and maintainability by identifying and managing redundancy, clone-and-own focuses

on rapid adaptation rather than efficient redundancy management, despite serving

a similar purpose in promoting reuse. Both copy-based reuse and clone detection

address code duplication but differ significantly in their methodologies and scopes.

Copy-based reuse research, as exemplified by our work, provides a broader, ecosystem-

level perspective, incorporating social aspects and the characteristics of entire

projects. In contrast, clone detection focuses on the technical identification of

code snippets within specific contexts, while the clone-and-own practice emphasizes

customization and independent maintenance of forked projects.

3.3.2 Contributions

Our contribution in this work has three aspects as follows.

32

Accuracy

Our study leverages the World of Code (WoC) infrastructure to analyze reuse of nearly

the entire open source software landscape. This allows the capture of the instances

of copying that would be missed if only a subset of public repositories were to be

analyzed. In contrast, previous studies often focused on samples of mostly “popular”

repositories drawn from specific communities or subsets of programming languages.

They either have mostly concentrated on a specific community (e.g. Java language,

Android apps, etc.) Heinemann et al. (2011); Haefliger et al. (2008); Mockus (2007);

Hanna et al. (2012); Fischer et al. (2017); Sojer and Henkel (2010)or only sampled

from a single hosting platform (e.g. GitHub) Gharehyazie et al. (2017, 2019). This,

consequently, prevented identification of all inter-community or out-of-sample copies.

Even research with more comprehensive programming language coverage such as

study by Lopes et al. (2017) or studies by Hata et al. (2021d,b) analyze only a subset

of programming languages and additionally use convenience sampling methods by

excluding less active or “unimportant” repositories. As our results demonstrate, even

inactive and “small” projects appear to provide many of the artifacts reused in OSS,

even by the “largest” and most active projects.

Existing literature on code cloning primarily focuses on empirical studies, case

studies, and tool evaluations. Empirical studies typically analyze code clones within

specific projects or samples of open source software repositories. These datasets

are large but not exhaustive of the entire OSS ecosystem. For example, studies

by Juergens et al. (2009); Roy et al. (2009) examine hundreds to thousands of

files or repositories, providing valuable but partial insights. Case studies offer

in-depth analysis of cloning practices within individual projects or organizations,

giving detailed context but limiting the scale to the specific cases under study.

Tool evaluations involve benchmark studies of clone detection tools, evaluating

their performance on curated datasets. While these studies contribute important

information about tool effectiveness, they do not cover the entire OSS ecosystem.

33

Unlike studies that rely on selective sampling, our analysis encompasses nearly the

entire open source software ecosystem, providing a broad and necessary foundation for

understanding code reuse. This is a fundamental requirement for accurately tracking

the origin of files within entire OSS, as it helps to uncover accurate trends and patterns

that would be biased in analyses based on the samples of such data, offering a more

accurate understanding of reuse practices.

Methodology and Focus

Copy-based reuse has not been explored as thoroughly as the dependency-based reuse

(e.g., Cox (2019); Frakes and Succi (2001); Ossher et al. (2010)).

For example, Mili et al. (1995) have shown that dependency-based reuse can lead

to more sustainable software architectures by promoting component-based design and

reducing redundancy. Additionally, Brown and Wallnau (1998) demonstrated that

by leveraging well-defined interfaces and reusable libraries, dependency-based reuse

can significantly improve software maintainability and scalability. Nevertheless, very

few, if any, similar analyses exist regarding copy-based reuse. Copy-based reuse is

potentially no less important, but is a much less understood form of reuse Jahanshahi

and Mockus (2024). Most studies in copy-based reuse domain focus on clone detection

tools and techniques Roy et al. (2009); Ain et al. (2019); Jiang et al. (2007); Hanna

et al. (2012); White et al. (2016) rather than on the characteristics of entire source

code files that possibly make reuse more or less likely.

Furthermore, almost all studies we reviewed focus solely on source code reuse,

whereas we track all artifacts, whether they are code or other reusable development

resources Jahanshahi and Mockus (2024). By using the World of Code research

infrastructure, which encompasses nearly the entire OSS ecosystem, we identified

and analyzed copying activity at this scale for the very first time.

In contrast to clone detection, which primarily involves identifying similar code

snippets within specific directories or domains Inoue et al. (2021); Svajlenko et al.

(2013), our research addresses the broader context of entire files and diverse artifacts

34

across the OSS ecosystem, providing a more comprehensive understanding of reuse.

Our method bridges the clone detection and clone-and-own approaches by detecting

all instances of reuse, whether they are kept without any changes or modified after

reuse, thereby encompassing both the technical and managerial aspects of code reuse.

In existing clone detection literature, several methods are employed to identify

code clones. These methods include text-based, token-based, tree-based, and graph-

based techniques. Text-based methods detect clones by comparing raw text, which is

straightforward but can be less accurate due to variations in formatting. Token-based

methods improve on this by converting code into tokens and detecting similarities at

this more abstract level, enhancing accuracy but still being susceptible to variations

in code structure. Tree-based methods parse the code into abstract syntax trees

(ASTs) and identify clones by comparing these trees, providing a more structured

and semantically meaningful detection. Graph-based methods further abstract code

into control flow or data flow graphs, allowing for the detection of more complex and

semantic clones Roy et al. (2009).

The clone and own literature primarily employs these detection methods to

understand the broader landscape of code cloning. For example, Juergens et al. (2009)

utilized a combination of these techniques to analyze cloning practices in software

projects. These methods are effective in identifying different types of clones, such as

exact, parameterized, and semantic clones, but they often focus on similarities and

patterns rather than exact matches.

In contrast, our research employs a method focused on identifying reuse at the

blob-level, specifically detecting if the exact versions of code have been copied. While

it misses instances where a single code snippet has been copied, this approach does

not rely on abstractions or patterns. This method involves obtaining hashes for

all versions of the entire open source software ecosystem to detect identical code

segments, ensuring that every version of code is tracked to its origin. This exhaustive

and detailed approach allows for a comprehensive analysis of copy-based supply chains

at the OSS level. Since software supply chains form a network over the entire OSS, it

35

is not feasible to study them by sampling projects: representative samples from large

graphs are notoriously difficult to obtain (see, e.g., Leskovec and Faloutsos (2006)).

In addition to ensuring that the entire file has been copied and committed, our

method easily scales to the entire OSS ecosystem as it avoids the need to look for

similarities among tens of billions of versions by utilizing hashes. Traditional clone

detection techniques would need to be substantially modified to work at this scale.

We discuss some of the potential approaches in Section 8.3.1.

Influencing Factors and Social Aspects

Our study explores how the characteristics of OSS projects influence the propensity

for their artifacts to be reused, examining their social aspects. Previously, the focus

has been primarily on the desired functionality and the code itself Srinivas et al.

(2014); Geisterfer and Ghosh (2006), but we also investigate the social aspects of this

phenomenon in the open source community.

The literature on clone detection and our research both explore the social aspects

of code reuse, but they do so from different perspectives and with varying emphases

on social and technical factors. Existing literature on clone detection primarily

focuses on the technical aspects of identifying code clones and understanding their

impact on software maintenance and quality. For instance, studies by Juergens

et al. (2009); Roy and Cordy (2007) delve into the reasons for code cloning,

such as improving productivity, learning, and avoiding reimplementation of similar

functionalities. These studies often highlight the technical motivations behind code

cloning, such as reusability and rapid prototyping, but they also touch upon social

aspects like collaborative development and knowledge sharing within teams. However,

the primary emphasis remains on the technical detection and management of code

clones.

In contrast, our research takes a broader view by examining how the characteristics

of open source software projects influence the propensity for their artifacts to be

reused. This includes a detailed analysis of both social and technical factors.

36

Our study explores the diverse motivations and implications of reuse in the OSS

community, considering aspects such as project size, community engagement, and the

collaborative nature of OSS development. By doing so, we highlight the importance

of social dynamics in code reuse, including factors like community contributions, the

reputation of projects, and the collaborative environment that fosters code sharing

and reuse.

By examining these social and technical factors, our study provides a more

comprehensive understanding of the motivations behind code reuse in the OSS

community. We draw parallels to other factors influencing copy-based reuse, such

as the ease of access to code, the open and collaborative nature of OSS projects, and

the role of community support and documentation. This broader perspective allows us

to highlight the diverse and sometimes conflicting motivations for code reuse, ranging

from technical efficiency to social recognition and collaborative learning.

3.4 Methodology

To make the subsequent discussion precise, we first introduce a few definitions. The

time when each unique blob b was first committed to each project P is denoted as

tb(P). The first repository Po(b) = ArgMinP tb(P) is referred to as the originating

repository for b (and the first author as the creator). Then project pairs consisting

of a project with the originating commit and the destination project with one of the

subsequent commits producing the same blob (Po(b), Pd(b)) are identified as reuse

instances. The reuse propensity (the likelihood that a blob will be copied to at least

one other project) is then modeled based on the type of the file represented by the

blob and the activity and popularity characteristics of the originating projects.

37

3.4.1 RQ1: How extensive is copying in the entire OSS

landscape?

To investigate how widespread whole-file copying in OSS actually is, we first want

to establish a baseline: what fraction of blobs were ever reused, and if reused, to

how many downstream projects? Specifically, in RQ1, we are showing the number

of blobs, originating as well as destination projects (deforked), and copy instances

across the entire OSS ecosystem. These numbers are not estimates but the actual

numbers calculated over the complete dataset.

3.4.2 RQ2: Is copy-based reuse limited to a particular group

of projects?

One may argue that the results in RQ1 are not necessarily important, as only “small”

projects may reuse code in a copy-based manner. To see if this is actually the case,

we randomly sampled 5 million reuse instances from each of the 128 files into which

the data was divided, based on the first two bytes of the hash of blobs. This resulted

in a total of 640 million instances for the analysis. This approach ensured that our

sample was distributed across the entire dataset, capturing a diverse range of copy

instances. The sample size of 640 million instances constitutes approximately 2.67%

of the entire dataset. Although this is a small fraction of the data, it is sufficiently

large to ensure the statistical reliability and representativeness of our analysis, as the

large absolute size of the sample guarantees its statistical reliability according to the

Central Limit Theorem.

Before going further, we need to define the qualitative and, more importantly,

subjective terms of “small” and “big” projects with quantitative and justified

measures. Crowston and Howison (2005) and Koch and Schneider (2002) have shown

that project activity, as measured by commit frequency, is a strong indicator of project

health and sustainability. Additionally, the use of stars as a metric is well-supported

38

in the literature, as they represent a form of user endorsement and are correlated

with project visibility and perceived quality Ray et al. (2014). We choose these two

metrics because both the number of commits and the number of stars are indicators

of a project’s activity and popularity. Commits reflect the ongoing development and

maintenance efforts, which are important for the sustainability and evolution of a

project. Stars, on the other hand, reflect the community’s interest and endorsement,

indicating the project’s visibility and influence. These metrics are widely used in

empirical software engineering research to evaluate the health and impact of open

source projects Jiang et al. (2007); Borges et al. (2016).

We define projects with over 100 commits and 10 stars as “big” projects. The

mean and 3rd quantile values for the number of commits in our dataset are 46 and 12,

respectively. This aligns with established practices in the literature where thresholds

are often set significantly above average to isolate highly active projects. By setting

the threshold at more than double the mean, we ensure that only the top-performing

projects are classified as big. Similarly, the threshold of 10 stars is set based on the

mean of 2.33 and 3rd quantile value of 0 for stars. This indicates that the majority of

projects receive few or no stars, reflecting their popularity and community engagement

levels. By selecting projects with at least 10 stars, we focus on those with significant

community recognition, capturing less than 1% of the dataset but representing the

most influential projects.

The thresholds chosen for “small” group, on the other hand, are projects with no

stars and fewer than 10 commits to ensure the projects are indeed small and inactive.

This approach ensures that the small group, comprising 62% of projects, includes

those with minimal activity and engagement, consistent with findings by Gousios

and Spinellis (2012) that a large proportion of open source projects are relatively

inactive. We consider all the other projects that do not fall into either the big or

small categories as the “medium” group. The medium group captures the middle

ground, excluding only the extremes, thus providing a balanced representation of the

majority of active projects.

39

Using this taxonomy, we counted the number of unique blobs involved in these

copy instances between groups. It should be mentioned that a blob can have several

downstream projects that do not necessarily fall into the same group. Therefore, we

considered the biggest downstream project for our analysis purposes. For example,

if a blob originated in a medium project and was reused by both a big and a small

project, we count it in the “medium to big” category.

Considering the biggest downstream project for each unique blob ensures that the

most significant reuse instances are captured. This approach is supported by research

indicating that the impact of code reuse is often determined by the size and activity

of the downstream projects utilizing the code Mockus (2007); Weiss and Lai (1999).

By focusing on the largest downstream project, we ensure that our analysis reflects

the most substantial and influential reuse cases of a particular blob.

3.4.3 RQ3: Do characteristics of the blob affect the proba-

bility of reuse?

The third part of our research question (RQ1) focuses on the properties of reused

artifacts. To address this, we obtained a large random sample of blobs comprising

1/128 of all blobs.

We have to point out that unlike RQ2, where we randomly sampled copy instances

(meaning all the blobs involved were reused at least once), here we are sampling from

the b2tP map that includes all blobs, whether they have been reused or not. Our

dataset is divided into 128 files based on the first two bytes of the blob hash. Hash

functions, by design, distribute input data evenly across the output space. The use

of hash functions to divide data ensures a uniform distribution across the resultant

files Mitzenmacher and Upfal (2017). By using one of these 128 files as our sample,

and given the vast size of the dataset, we ensure that it is an unbiased representation

of the entire dataset and that this sample size is sufficient to achieve high statistical

power and accuracy in our analyses.

40

We then employed a logistic regression model with the response variable being

one for reused blobs and zero for non-reused blobs.

Logistic regression is a robust statistical method used to model the probability

of a binary outcome based on one or more predictor variables. It is widely used in

empirical software engineering to understand factors influencing software development

practices Hosmer Jr et al. (2013). By using logistic regression, we can quantify the

effect of various predictors on the likelihood of a blob being reused.

In this research question, we are concerned with infectiousness based on our Social

Contagion Theory. Specifically, we are looking for properties of artifacts that affect

their propensity to be reused.

The first predictor in our model is the programming language of the blob. Different

programming languages are associated with distinct package managers, development

environments, and community cultures, which can influence reuse practices Bissyandé

et al. (2013). For example, the ease of dependency management in languages

like Python (via pip) or JavaScript (via NPM) might facilitate reuse more than

in languages with less mature package management systems. Thus, including the

programming language as a predictor helps capture these contextual differences. We

anticipate that source code for programming languages such as C, which lack package

managers, is likely to be copied more frequently than source code for languages with

sophisticated package managers, such as JavaScript.

The second predictor is the time of blob creation. This factor helps account

for temporal dynamics by indicating the period during which a blob was created,

reflecting different reuse practices over time. We hypothesize that older blobs were

more likely to be reused due to fewer available reusable artifacts in the OSS landscape

at the time. However, the time of creation inherently includes the effect of a blob’s

availability duration (tb(Pd)− tb(Po)), meaning older blobs have had more time to be

discovered and reused. Previous research by Weiss and Lai (1999) indicates that the

age and visibility of code artifacts influence their reuse.

41

To isolate and examine the influence of the creation period without the confound-

ing effect of longer availability, we introduce the concept of time-limited reuse. By

focusing on copies occurring within specific time intervals after the blob’s creation,

we remove the advantage of longer visibility and can better assess how the creation

period itself influences reuse2.

We evaluated both one-year and two-year intervals and found similar results. By

evaluating both intervals and finding similar results, we enhance the robustness of

our conclusions. To maintain conciseness and avoid repetition, we report the findings

for the two-year interval. Reporting the two-year interval results provides a balance

between sufficient observation time for reuse events and the practical need for concise

reporting. Consequently, we excluded blobs created after May 1, 2020, ensuring that

all blobs had at least two years to be potentially reused, providing a consistent time

frame for analysis Weller and Kinder-Kurlanda (2016). This approach ensures that

our findings are not skewed by varying availability periods.

The third predictor is whether the blob is a source code or a binary. We

hypothesize that binaries, identified by their git treatment or file extensions like tar,

jpeg, or zip, may exhibit different reuse patterns compared to source code. We expect

that binary files, such as images, might be copied more often because they are easy to

understand and reuse but difficult to recreate. Unlike other types of files, developers

cannot easily extract specific parts or functionalities from binary files. That is, source

code blobs are directly reusable and modifiable, whereas binaries might be reused as-is

without modification. This distinction is important as it affects the ease or necessity

of reuse Gabel and Su (2010). Therefore, when it comes to whole-file reuse, which is

our definition of reuse in this work, we anticipated that binary blobs are more likely

to be copied.

The last factor we hypothesize might affect the propensity of a blob to be reused

is its size. The size of a blob can influence its reuse for several reasons. Larger blobs

2This definition is used solely for the purposes of our regression model and subsequent analysis.
It is not applied in RQ1, RQ2

42

may contain more functionality, making them more attractive for reuse. Conversely,

smaller blobs may be simpler to integrate into existing projects. Previous research by

Capiluppi et al. (2003) and Mockus (2007) has indicated that the size of code artifacts

can impact their maintainability, comprehensibility, and ultimately their reuse.

To investigate whether a difference exists between the sizes of copied and non-

copied blobs, we exclude binary blobs from the analysis. The size of binary blobs is

not comparable to the size of source code blobs due to their fundamentally different

nature. Binary blobs often include compiled code, media files, or compressed archives,

which do not provide a meaningful comparison to plain text source code in terms of

size. Because of these differences, we did not incorporate blob size as a predictor

in our logistic regression model. Including binary blobs could skew the results and

lead to misleading conclusions. Instead, we perform a t-test to compare the sizes

of copied blobs and non-copied blobs. The t-test is a robust statistical method

used to determine whether there is a significant difference between the means of

two groups Student (1908). By applying the t-test, we can rigorously assess whether

blob size influences the likelihood of reuse.

3.4.4 RQ4: Do characteristics of the originating project

affect the probability of reuse?

The fourth part of RQ1 concerns the chances of finding or being aware of a blob

approximated by signals at the project level. This is the exposure factor in the

Social Contagion Theory. To conduct this study, we use WoC’s MongoDB project

database to randomly sample one million projects, comprising nearly 1% of all

projects indexed by WoC, to achieve a balance between statistical validity and

computational feasibility. A sample size of one million is large enough to provide

a representative snapshot of the entire population.

We then search the reuse instances (tb(Po), tb(Pd)) in our Ptb2Pt map to determine

if the project originated at least one reused blob. A logistic regression model with

43

the response variable being one if the project has introduced at least one reused

blob (and zero otherwise) is then constructed. The predictors in the project-level

model include the number of commits, blobs, authors, forks, earliest commit time,

the activity duration of the project (the time between the first and the last commit

in that project), the binary ratio (the ratio of binary blobs to total blobs), and the

programming language. We also use the number of GitHub stars for each project as

a predictor. This data in WoC (number of stars) is sourced from GHTorrent Gousios

(2013).

The choice of these predictors for our model is based on the current literature on

relevant project properties.

• Number of Commits. Number of commits is a strong indicator of project activity

and maintenance. Koch and Schneider (2002) show that projects with higher

commit frequencies tend to have more active development and are more likely

to be reused due to their perceived reliability and continuous improvement.

• Number of Blobs. Number of blobs represents the volume of content and

potential reusable components. Larger projects with more blobs are likely to

offer more opportunities for reuse Mockus (2007). It can also indicate the

project’s complexity and modularity. Projects with more files may be more

modular and provide more reusable components.

• Number of Authors. Number of authors reflects the collaborative nature of

a project. Projects with more contributors tend to have diverse expertise,

which supports innovation and decentralized communication, improving the

development process Crowston and Howison (2005), and potentially increasing

the likelihood of reuse.

• Number of Forks. Number of forks is a proxy for the project’s popularity and

community engagement. Projects with more forks are often viewed as valuable

and trustworthy Tsay et al. (2014), increasing their reuse potential.

44

• Earliest Commit Time and the Activity Duration. Earliest commit time and

the activity duration provide insights into the project’s maturity and stability.

Older and long-active projects are more likely to be well-established and

reused Gamalielsson and Lundell (2014).

• GitHub Stars. GitHub stars is a form of social endorsement, indicating

community approval and interest. Projects with more stars are likely to

be considered high-quality and reliable, making them more attractive for

reuse Borges et al. (2016).

• Binary Ratio. Binary ratio, defined as the ratio of binary blobs to total blobs,

can impact the reuse potential of a project. Binary blobs, such as compiled

code or media files, often indicate pre-packaged functionalities or resources that

are ready for use. A higher binary ratio may suggest that a project provides

ready-to-use components, which can facilitate reuse Mockus (2007).

Regarding language assignment, at the blob-level, WoC’s b2sl map was used for

blob language detection based on file extensions. This method is straightforward and

effective for identifying the programming languages of individual blobs. Nevertheless,

assigning a primary language to a project is more complex due to the use of multiple

languages in most projects. WoC’s MongoDB project database provides counts of

files with each language extension, allowing us to pick the most frequent extension

as the project’s main language. For our study, we considered only a subset of blobs,

specifically originating blobs (blobs first seen in OSS within the project), and assumed

the most common language among these blobs as the project’s primary language.

This approach aligns with the practice of determining the dominant language based

on primary contributions Vasilescu et al. (2015).

45

3.5 Results & Discussions

The numbers presented in this section are derived from version U3 of WoC, which

was the most recent version available at the time of this analysis.

3.5.1 RQ1: How extensive is copying in the entire OSS

landscape?

We identified nearly 24 billion copy instances (unique tuples containing the blob and

originating and destination projects) encompassing more than 1 billion distinct blobs.

With approximately 16 billion blobs in the entire OSS landscape (as approximated

by WoC), 6.9% of the blobs have been reused at least once, and each reused blob is

copied to an average of 24 other projects (see Table 3.1).

Table 3.1: Basic Statistics of Reuse Instances

Count Total %

Reuse instances 23,914,332,270 - -
Blobs 1,084,211,945 15,698,467,337 6.9%
Originating projects 31,706,416 107,936,842 29.4%
Destination projects 86,483,266 107,936,842 80.1%

Nearly 32 million projects (about 30% of the nearly 108 million deforked OSS

projects indexed byWoC) originated at least one reused blob. Over 86 million projects

have copied these blobs, meaning 80% of OSS projects have reused blobs from another

project at least once.

3https://bitbucket.com/swsc/overview

46

https://bitbucket.com/swsc/overview

RQ1 Key Findings

1. We identified nearly 24 billion copy instances encompassing more than 1

billion distinct blobs.

2. 6.9% of all the blobs in the entire OSS have been reused at least once.

3. About 30% of all OSS projects originated at least one reused blob, and

80% of projects have reused blobs at least once.

The extensive reuse observed highlights the efficiency gains in OSS development,

as projects benefit from existing code to accelerate development cycles and reduce

costs. The widespread reuse also raises security concerns, as vulnerabilities in

copied code can propagate across numerous projects. This necessitates improved

vulnerability detection and management practices to ensure the integrity of reused

code. Additionally, License violations due to improper code reuse can lead to legal

challenges and compliance issues, underscoring the importance of clear licensing and

adherence to open source policies. Furthermore, our identification of blob-level reuse,

which only accounts for exact matches and not slight modifications, suggests that

the actual extent of code reuse might be even higher. The findings advocate for the

development of better tools and infrastructure to manage copy-based reuse, including

automated detection of security and legal risks, and tools for maintaining code quality

in reused components.

3.5.2 RQ2: Is copy-based reuse limited to a particular group

of projects?

The numbers already demonstrate the prevalence of copy-based reuse in the OSS

community. To understand how this reuse activity is distributed across different

groups of projects, we constructed a contingency table as explained in the methods

section. Each blob’s originating project is unique and falls into one of three categories

47

(big, medium, and small). However, downstream projects are not unique and we

consider the largest downstream project for each blob.

Our analysis revealed nearly 112 million unique blobs reused in our 640 million

sample copy instances, with nearly 13 million of these blobs reused by at least one

big project (see Table 3.2). This indicates that more than 11% of blobs are reused at

least once by at least one big project, showing that copy-based reuse is not limited

to small projects but is a widespread phenomenon in the OSS community.

Table 3.2: Blob Counts in Reuse Sample

Biggest Downstream Projects Total
Big Medium Small

Upstream Big 6,748,621 22,273,811 6,515,122 35,537,554 (31.8%)
Projects Medium 5,348,651 36,434,732 14,552,148 56,335,531 (50.3%)

Small 691,644 10,151,838 9,231,618 20,075,100 (17.9%)

Total 12,788,916 (11.4%) 68,860,381 (61.5%) 30,298,888 (27.1%) 111,948,185

However, it is still unclear if these reused blobs are predominantly introduced by

big projects. If this were the case, one could presume that these blobs are mostly of

good quality and not error-prone, making the costs of managing and tracking code

propagation through such reuse potentially outweigh the benefits. Sampling copy

instances revealed that big projects are responsible for only about 30% of reused blobs,

while the remaining 70% are introduced by medium and small projects. Specifically,

nearly 18% of these blobs are introduced by small projects, with the remaining 50%

coming from medium projects. Furthermore, even for big projects, almost 50%4 of the

blobs they reuse originate from medium and small projects (see Table 3.2). Therefore,

it is evident that not only big projects serve as upstream sources for copy-based reuse.

Indeed, many blobs introduced by medium and small projects are being widely reused.

Even if all widely reused blobs were exclusively introduced by big projects, copy-

based reuse still requires management for several reasons. For example, security

vulnerabilities may continue to spread even after the main project has fixed the

issue Reid et al. (2022).

4(5, 348, 651 + 691, 644)/12, 788, 916

48

RQ2 Key Findings

1. 32% of reused blobs originate from big projects, which comprise 1% of

the total projects.

2. 18% of reused blobs originate from small projects, which make up 62% of

the total projects.

3. 50% of reused blobs originate from medium projects, which represent 37%

of the total projects.

4. Nearly 50% of blobs reused by big projects originate from medium and

small projects, highlighting significant cross-category reuse.

Our findings demonstrate that a non-negligible portion of reused code in the

OSS community comes from medium and small projects, challenging the assumption

that high-quality code predominantly originates from large projects. This implies a

diverse quality spectrum in reused code and underscores the importance of ensuring

quality and security across all project sizes, as vulnerabilities in smaller projects can

propagate widely. Tools that can track the origin and usage of blobs are essential to

ensure timely updates and fixes across the OSS ecosystem, mitigating risks associated

with vulnerabilities and outdated code. The widespread nature of code reuse across

projects of all sizes, emphasizes the need for quality assurance, effective management,

and community collaboration to maintain the health and sustainability of the OSS

landscape.

3.5.3 RQ3: Do characteristics of the blob affect the proba-

bility of reuse?

In this section, we first demonstrate the reuse trends, followed by the logistic

regression model predicting the probability of a blob being reused. Additionally, we

present the reuse propensity per language and show the difference in blob size between

49

reused and non-reused blobs. Finally, we discuss a case study using JavaScript as an

example.

Reuse Trends

As explained in the methods section, we use a 2-year-limited copying definition in the

RQ3 and RQ4 models and results. This means that we consider a blob reused only if

it has been reused within 2 years of its creation. With this definition, 7.5% of blobs

have been reused. Figure 3.1a shows the total counts of new blobs and copied blobs

for each quarter since the year 20005. Both counts exhibit rapid growth, although

the growth in new blob creation appears to outpace that of copying. To investigate

this difference, Figure 3.1b shows the reuse propensity measured via the reuse ratio

(reused blobs divided by total blobs), confirming that new blob creation has outpaced

copied blobs since 2006 when the ratio began to decline.

(a) Generated and Reused Blobs Trends (b) Reused to Generated Blobs Ratio Trend

Figure 3.1: Quarterly Reuse Trends

Logistic Regression Model

We expect the nature of the blob to affect its propensity to be reused. To test this

hypothesis, we use a logistic regression model where the response variable is set to

one if the blob has been copied at least once (i.e., has been committed in at least two

5The number of projects and blobs was much smaller before 2000.

50

projects) within two years of its creation, and zero otherwise. We used WoC definition

of the programming language associated with each blob and categorized less common

programming languages in the sample as “other”. The descriptive statistics of the

variables are presented in Table 3.3.

Table 3.3: Blob-level Model - Descriptive Statistics

Variable Statistics

Reused Yes: 6,419,388 (7.5%) No: 78,136,705 (92.5%)

Language JavaScript Java C (Other)
(Counts) 11,122,849 4,579,458 3,460,733 65,393,053

. .
Creation Time 5% Median Mean 95%
(Date) 7/29/2012 2/7/2018 5/28/2017 2/28/2020

. .
Binary Yes: 18,516,721 (21.8%) No: 66,039,372 (78.2%)

The sample dataset is predominantly composed of blobs written in JavaScript,

with significant counts also in Java and C. Additionally, the distribution of blob

creation time is provided, showing a median date of February 7, 2018. Furthermore,

a notable proportion of the blobs, 21.8%, are binary.

The results of our logistic regression model are shown in Tables 3.4 and 3.5. The

model shows that the coefficients for all predictors are statistically significant with

p-values less than 0.0001, meaning they impact the probability of a blob being reused

(see Table 3.4).

The ANOVA table (Table 3.5) provides insights into the significance of different

variables. We see that all the predictors have p-value equal to zero, meaning that the

null hypothesis6 can be rejected. The null deviance is 45,438,151, which represents the

deviance of a model with only the intercept. Adding the Binary variable reduces the

deviance by 124,114, indicating its strong influence on reuse likelihood. The Creation

Time variable further reduces the deviance by 830,322, highlighting its importance

6H0: The reduced model (without the predictor) provides a fit to the data that is not significantly
worse than the full model (with the predictor). This suggests that the predictor does not significantly
improve the model’s fit.

51

Table 3.4: Blob-level Model - Coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -18.0293 0.0186 -967.07 < 2× 10−16

Binary 0.4775 0.0010 460.16 < 2× 10−16

Creation Time 0.8108 0.0010 828.34 < 2× 10−16

C 0.7142 0.0017 426.32 < 2× 10−16

C# -0.1277 0.0033 -38.15 < 2× 10−16

Go 0.3095 0.0065 47.74 < 2× 10−16

JavaScript -0.0832 0.0015 -56.21 < 2× 10−16

Kotlin -0.5606 0.0133 -42.02 < 2× 10−16

ObjectiveC 0.0810 0.0066 12.30 < 2× 10−16

Python -0.0327 0.0030 -10.97 < 2× 10−16

R 0.4070 0.0083 49.22 < 2× 10−16

Rust 0.0879 0.0095 9.30 < 2× 10−16

Scala -0.6168 0.0123 -50.21 < 2× 10−16

TypeScript 0.1827 0.0046 39.38 < 2× 10−16

Java 0.0794 0.0019 42.37 < 2× 10−16

PHP 0.3561 0.0024 151.14 < 2× 10−16

Perl 0.7664 0.0082 92.95 < 2× 10−16

Ruby -0.4782 0.0044 -108.58 < 2× 10−16

in predicting reuse. The “Language” variable also reduces the deviance by 230,614.

Although these reductions might seem small relative to the null deviance, they are

statistically significant given the large sample size and the high degrees of freedom

involved.

Table 3.5: Blob-level Model - ANOVA Table

Df Deviance Resid. Df Resid. Dev p.value

NULL 84,556,092 45,438,151.00
Binary 1 124,114.20 84,556,091 45,314,036.80 < 2× 10−16

Creation Time 1 830,322.63 84,556,090 44,483,714.17 < 2× 10−16

Language 15 230,614.17 84,556,075 44,253,100.00 < 2× 10−16

To assess the direction and the size of predictor effects, we need to go further.

In a logistic regression model, a positive coefficient estimate indicates that as the

predictor variable increases, the odds of the outcome occurring increase, while a

negative coefficient estimate indicates that as the predictor variable increases, the

52

odds of the outcome occurring decrease. Since the coefficients represent the change

in the log-odds of the outcome for a one-unit increase in the predictor, we transform

these coefficients to odds ratios by exponentiating them to interpret the actual impact

of each predictor. The odds ratio indicates how the odds of the outcome change with

a one-unit increase in the predictor. The results are shown in Figure 3.2. This graph

displays the odds ratios for various predictors in the logistic regression model at the

blob level. An odds ratio greater than 1 indicates an increase in the likelihood of

reuse, while an odds ratio less than 1 indicates a decrease.

Figure 3.2: Blob-level Model - Logistic Regression Odds Ratios

The creation time has the highest positive coefficient. The time variable in the

model represents the time elapsed from the blob’s creation until current time, meaning

that older blobs have higher time values. The positive coefficient indicates that newer

blobs (with smaller time values) are less likely to be reused.

This is not because they have been visible for a shorter duration (as we controlled

for this with the time-bound definition of reuse), but likely due to other factors we

53

hypothesized, such as fewer artifacts being available for reuse at the time of their

creation.

Binary blobs show a significant increase in reuse likelihood with an odds ratio

of 1.63. Given this confirmed effect, we calculated the reuse propensity for binary

and non-binary blobs separately. The results showed that 9.5% of binary blobs were

reused, compared to 7.0% of non-binary blobs in our sample.

Different programming languages show varied impacts on reuse likelihood. Blobs

written in Perl, C, R, PHP, Go, TypeScript, Objective-C, Java, and Rust are more

likely to be reused, with Perl showing the highest odds ratio. In contrast, blobs

written in Kotlin, Scala, Ruby, C#, JavaScript, and Python are less likely to be

reused, with Kotlin and Scala showing the most significant negative coefficients. This

variability suggests that certain languages, perhaps due to their prevalence or specific

use cases, are more conducive to code reuse.

Per-Language Propensity

Following our logistic regression results, which demonstrated that programming

language is a statistically significant factor in reuse probability of a blob, we calculated

the propensity to copy for each programming language, measured as the percentage

of reused blobs within that language (see Table 3.6). The results show that blobs

written in Perl have the highest propensity to be reused at 18.5%, indicating a strong

tendency for code reuse among Perl developers. Conversely, Kotlin has the lowest

propensity at 3.0%, suggesting minimal code reuse in this language. Languages such

as C (15.2%) and PHP (9.9%) also show high reuse rates, while Python (6.4%),

JavaScript (5.5%), and TypeScript (6.3%) have lower rates. Other languages like

Java (7.8%), Go (7.9%), and R (9.8%) fall in the middle range, with moderate reuse

rates.

54

Table 3.6: Blob-level - Propensity to Reuse

Language Ratio Language Ratio Language Ratio
C 15.2% ObjectiveC 8.4% TypeScript 6.3%
C# 6.0% Python 6.4% Java 7.8%
Go 7.9% R 9.8% PHP 9.9%
JavaScript 5.5% Rust 6.7% Perl 18.5%
Kotlin 3.0% Scala 3.8% Ruby 5.1%

JavaScript Example

The role of programming language in reuse activity might have several underlying

reasons, as previously discussed. One such reason is the presence of a reliable package

manager. If true, improvements in a package manager should reduce the propensity

to reuse an artifact. To examine this, we analyzed the timeline of the reuse ratio for

JavaScript, shown in Figure 3.3. The figure indicates a sharper decrease in the slope

around 2010, the year the NPM package manager was introduced. This downward

trend continues until mid-2013, when the copying activity rate drops to around 7%

and then levels off. This pattern supports the hypothesis that the introduction and

adoption of NPM significantly reduced code reuse through copying.

However, it is important to note that this is just an illustration, and further

research is needed to understand this phenomenon fully. Our current study was

not focused on this aspect, so we did not conduct an in-depth analysis. Additional

investigations with more data points and comparisons with other languages that have

introduced similar improvements in their package management systems are necessary

to confirm that the observed effect is not coincidental or specific to JavaScript alone.

Blob Size

The final predictor we hypothesized to affect the reuse probability of a blob was its

size. To investigate whether there is a significant difference between the sizes of copied

and non-copied blobs, we conducted a t-test comparing these sizes. Our analysis

55

Figure 3.3: Reused Blobs to Total Generated Blobs Ratio Trend in JavaScript

revealed a significant difference (p-value ¡ 2.2e-16), indicating that, on average, copied

blobs are smaller than non-copied blobs.

However, the effect varies by language. Specifically, per-language t-tests reveal

that copied blobs are smaller in languages like JavaScript and TypeScript, larger in

languages such as C and Python, and remain unchanged in Objective-C, as detailed

in Table 3.7.

For example, in JavaScript, the t-value is -59.9, suggesting that copied blobs are

significantly smaller, while in C, the t-value is 195.9, indicating that copied blobs are

larger. Similar patterns are observed in other languages, with TypeScript showing

a t-value of -35.9 (smaller copied blobs) and Python a t-value of -5.8 (also smaller

copied blobs). Conversely, languages like Java (t-value 120.7) and PHP (t-value 28.6)

show that copied blobs tend to be larger.

This variation highlights that the relationship between blob size and reuse

propensity is complex and influenced by language-specific factors. While our findings

56

Table 3.7: Size Difference between Reused and non-Reused Blobs
(Positive t value means larger reused blobs.)

Language t value p-value Language t value p-value
C 195.9 < 2× 10−16 Rust -7.8 < 2× 10−16

C# 12.5 < 2× 10−16 Scala 9.1 < 2× 10−16

Go 15.5 < 2× 10−16 TypeScript -35.9 < 2× 10−16

JavaScript -59.9 < 2× 10−16 Java 120.7 < 2× 10−16

Kotlin -14.5 < 2× 10−16 PHP 28.6 < 2× 10−16

ObjectiveC 0.7 0.430298 Perl 5.8 < 2× 10−16

Python -5.8 < 2× 10−16 Ruby -24.9 < 2× 10−16

R -7.6 < 2× 10−16 Other -364.9 < 2× 10−16

demonstrate a general trend of smaller copied blobs, the differing patterns across

languages suggest that other underlying factors may be at play.

57

RQ3 Key Findings

1. The reuse ratio is decreasing over time.

2. 7.5% of blobs have been reused within two years of creation.

3. Older blobs, when controlling for the confounding effect of increased

visibility, are more likely to be reused.

4. Binary blobs are 63% more likely to be reused.

5. Programming languages significantly impact reuse likelihood. Blobs

written in languages like Perl, C, R, PHP, Go, TypeScript, Objective-

C, Java, and Rust are more likely to be reused, while those written in

Kotlin, Scala, Ruby, C#, JavaScript, and Python are less likely to be

reused.

6. The reuse ratio timeline for JavaScript shows a notable decrease in slope

around the year the NPM package manager was introduced.

7. Copied blobs are generally smaller than non-copied blobs, but this is

not consistent across different languages. The size difference varies by

language, with reused blobs in C, Java, PHP, Go, C#, Scala, Perl, and

Objective-C being larger than non-reused blobs, while in JavaScript,

TypeScript, Ruby, Kotlin, Rust, R, and Python, the reused blobs are

smaller than non-reused blobs.

The higher reuse propensity among binary blobs suggests that binaries are

inherently more reusable, likely due to their compiled nature, which allows easy

integration across projects. The lower reuse likelihood of newer blobs indicates a

potential issue with the integration and acceptance of recent contributions, possibly

due to rapid technological advancements and shifts in development practices. The

significant impact of programming languages on reuse likelihood highlights the

58

importance of language-specific tools and ecosystems. Languages with higher reuse

rates, such as Perl and C, benefit from mature ecosystems, while newer or niche

languages like Kotlin and Scala show lower reuse rates, potentially due to smaller

communities. The decline in JavaScript code reuse post-NPM introduction suggests

that improved package management can reduce the need for direct code copying,

promoting more modular and maintainable codebases.

Regarding blob size, the general trend indicates that smaller code artifacts are

more reusable, likely due to their simplicity and ease of integration. However, this

trend varies significantly across different programming languages. For example, in

languages like JavaScript and TypeScript, copied blobs tend to be smaller, supporting

the idea of writing concise and modular code to enhance reusability. In contrast, in

languages like C and Python, copied blobs are often larger, suggesting that the nature

and use cases of these languages might necessitate larger reusable components. This

variation underscores the importance of understanding language-specific factors when

considering code reuse management strategies.

3.5.4 RQ4: Do characteristics of the originating project

affect the probability of reuse?

In this section, we first present the logistic regression model. We then demonstrate

the per-language reuse propensity and compare it to blob-level results. Finally, we

analyze binary blob reuse.

Logistic Regression Model

We applied a logistic regression model to determine the likelihood of a project

introducing at least one reused blob. The response variable is binary: 1 if the

project has introduced a reused blob, 0 otherwise. Descriptive statistics for the

model variables are presented in Table 3.8. Consistent with blob-level data, the

most frequent languages in our sample are JavaScript and Java.

59

Table 3.8: Project-level Model - Descriptive Statistics

Variable Description Statistics

Reused Project has at least 1 reused blob Yes: 205,140 (33.7%) No: 403,195 (66.3%)
5% Median Mean 95%

Blobs Number of generated blobs 1 15 162.7 397
Binary Binary blobs to total blobs ratio 0 0 0.1 0.6
Commits Number of commit 1 5 57.0 84
Authors Number of authors 1 1 2.5 3
Forks Number of forks 0 0 1.5 1
Stars Number of GitHub stars 0 0 3.4 2
Time Earliest commit time 7/18/2013 3/26/2018 9/15/2017 3/3/2020
Activity Total months project was active 1 1 2.5 8

. .
Language JavaScript Java Python PHP C (Other)
(Counts) 86,065 43,172 40,503 24,659 22,258 391,678

Spearman’s correlation analysis, suitable for the observed heavily skewed distri-

butions, is presented in Table 3.9. The number of commits shows a high correlation

with two other predictors: activity time (0.68) and the number of blobs (0.67).

These high correlations indicate redundancy, as the number of commits does not

add significant information beyond what is already captured by activity time and the

number of blobs. This redundancy can lead to multicollinearity, potentially distorting

the model’s coefficients and reducing interpretability. Consequently, we remove the

number of commits from the model, simplifying it without sacrificing explanatory

power. All other correlations are below 0.52, which are not concerning.

Table 3.9: Project-level Model - Spearman’s Correlations Between Predictors

Blobs Binary Commits Authors Forks Stars Time Activity
Blobs 1.00 0.46 0.67 0.34 0.22 0.22 0.09 0.52
Binary - 1.00 0.18 0.12 0.06 0.05 0.02 0.14
Commits - - 1.00 0.45 0.27 0.26 0.05 0.68
Authors - - - 1.00 0.32 0.22 0.05 0.38
Forks - - - - 1.00 0.48 0.14 0.28
Stars - - - - - 1.00 0.13 0.28
Time - - - - - - 1.00 0.05
Activity - - - - - - - 1.00

The results for the project-level logistic regression model are shown in Tables 3.10

and 3.11.

60

All the variables in the model have p-values less than 0.05, indicating that they

are statistically significant in predicting the likelihood of a project introducing reused

blobs (see Table 3.10). This demonstrates strong evidence against the null hypothesis,

suggesting that these variables do have an effect on reuse.

Table 3.10: Project-level Model - Coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.79 0.16 -30.01 < 2× 10−16

Blobs 0.61 0.00 228.94 < 2× 10−16

Binary 0.77 0.02 40.09 < 2× 10−16

Authors 0.09 0.01 8.24 < 2× 10−16

Forks 0.31 0.01 27.72 < 2× 10−16

Stars 0.06 0.01 7.19 6.61× 10−13

Time 0.10 0.01 12.00 < 2× 10−16

Activity 0.07 0.01 10.48 < 2× 10−16

C -0.33 0.02 -19.60 < 2× 10−16

C# -0.30 0.02 -15.74 < 2× 10−16

Go -0.29 0.04 -7.70 1.33× 10−14

JavaScript 0.21 0.01 22.58 < 2× 10−16

Kotlin -0.23 0.05 -4.30 1.75× 10−5

ObjectiveC -0.13 0.03 -3.63 0.000288
Python -0.19 0.01 -14.78 < 2× 10−16

R -0.27 0.05 -5.93 3.04× 10−9

Rust -0.48 0.07 -6.65 2.87× 10−11

Scala -0.27 0.07 -3.79 0.000153
TypeScript 0.88 0.03 34.57 < 2× 10−16

Java -0.25 0.01 -20.90 < 2× 10−16

PHP 0.29 0.01 19.59 < 2× 10−16

Perl -0.31 0.10 -3.20 0.001395
Ruby 0.63 0.02 33.18 < 2× 10−16

Examining the ANOVA results (Table 3.11) provides further insight into the

impact and significance of these predictors.

We see that all the predictors have p-value equal to zero, meaning that the null

hypothesis can be rejected.

The deviance values in the ANOVA table indicate the reduction in model deviance

when each predictor is included. For example, adding the number of blobs to the

model reduces the deviance by 131,219.53, a substantial reduction that underscores its

61

important role in the model. These results confirm the importance of these predictors

in explaining the variability in the likelihood of reuse.

Table 3.11: Project-level Model - ANOVA Table

Df Deviance Resid. Df Resid. Dev p.value
NULL 608,334 777,660.48
Blobs 1 131,219.53 608,333 646,440.95 < 2× 10−16

Binary 1 662.94 608,332 645,778.01 < 2× 10−16

Authors 1 926.69 608,331 644,851.32 < 2× 10−16

Forks 1 2,084.02 608,330 642,767.30 < 2× 10−16

Stars 1 63.77 608,329 642,703.53 1.44× 10−15

Time 1 156.98 608,328 642,546.54 < 2× 10−16

Activity 1 139.31 608,327 642,407.24 < 2× 10−16

Language 15 5,178.20 608,312 637,229.03 < 2× 10−16

To understand the size and direction of the impacts, we look at the odds ratios

inferred from the logistic regression coefficients. The odds ratio is calculated as the

exponential of the coefficient. An odds ratio greater than 1 indicates a positive impact,

while an odds ratio less than 1 indicates a negative impact. The results are shown in

Figure 3.4.

The logistic regression analysis shows that several predictors significantly impact

the likelihood of a project having a reused blob. TypeScript, Binary, Ruby, and

Blobs have the strongest positive effects, indicating that increases in these variables

substantially raise the odds of a project being reused. Other positive predictors

include Forks, PHP, JavaScript, Time, Authors, Activity, and Stars, which also

increase the likelihood, though to a lesser extent. Conversely, predictors like Rust, C,

Perl, C#, Go, Scala, R, Java, Kotlin, Python, and Objective-C negatively impact the

odds, suggesting that increases in these variables decrease the likelihood of a project

introducing a reused blob.

When interpreting the time variable, it is important to note that since the earliest

commit timestamp is represented as a number, we calculated the time elapsed from

the earliest commit to the current date for better interpretability. A larger time

value indicates an older earliest commit. The model shows that time has a positive

62

Figure 3.4: Project-level Model - Logistic Regression Odds Ratios

coefficient, suggesting that the older the earliest commit, the higher the probability

of introducing reused blobs. This result could be influenced by two factors. First, at

the blob-level model, we already observed that older blobs have a higher probability

of being reused. Additionally, while the time-bound definition of reuse controls for

the confounding effect of longer visibility at the blob level, it does not account for

the longer visibility of the project itself. Therefore, the observed result might also be

affected by the project’s age, which implies longer visibility, even though the blob is

reused within two years of its creation.

Per-Language Propensity

The project-level model highlights the significance of programming languages in the

likelihood of a project introducing a reused blob. To explore this further, we calculated

the percentage of projects in each language that have introduced reused blobs. From

our previous analysis (RQ1), we know that approximately 29% of projects introduced

63

at least one reused blob. When using the time-bound definition of copying, this ratio

increased to 33% in our sample. The results for each language are shown in Table

3.12.

Table 3.12: Percentage of Projects Introducing at Least One Reused Blob

Languages Ratio Language Ratio Language Ratio
C 33.2% ObjectiveC 40.0% TypeScript 62.3%
C# 37.0% Python 30.5% Java 36.2%
Go 31.3% R 28.5% PHP 46.4%
JavaScript 41.2% Rust 31.5% Perl 29.9%
Kotlin 40.0% Scala 36.0% Ruby 51.2%

The ratio of projects that have introduced reused blobs varies significantly across

different programming languages, offering new insights compared to the blob-level

analysis. For example, projects dominated by TypeScript have the highest probability

(62%) of introducing at least one reused blob. This finding is particularly interesting

because, at the blob level, the propensity to copy in TypeScript was lower than

average. This discrepancy suggests that TypeScript projects, acting as upstream in

the language’s supply chain, are less centralized. Developers in this language seem

more inclined to incorporate code from various, possibly unknown, projects.

Other languages also show distinct patterns. For instance, Ruby projects have

a high probability (51%) of reusing blobs, whereas Python projects have a lower

probability (30.5%). This variation indicates that the likelihood of code reuse

is strongly influenced by the primary language of the project, reflecting different

practices and community norms across languages. These insights emphasize the

importance of considering programming language when studying code reuse patterns

in software projects.

To ensure these results are comparable to blob-level analysis, we calculated the

copied blob ratio (copied blobs to total blobs) for each project and took the average

of this ratio for projects in each language. An important difference here with the

blob-level propensity is that at the blob level, language assignment was based on the

64

file extension of each blob, with binary blobs categorized as “Other”. In this project-

level analysis, the language of a blob is determined by the predominant language

of the project it belongs to. For example, a Python-written blob in a C-dominated

project is counted as a C blob. Similarly, binary blobs are assigned the language of

the dominant language in their respective projects. The results of this new definition

are shown in Table 3.13.

Table 3.13: Project-level - Propensity to Reuse

Language Ratio Language Ratio Language Ratio
C 15.4% ObjectiveC 9.5% TypeScript 5.6%
C# 4.7% Python 7.3% Java 5.8%
Go 6.7% R 7.2% PHP 9.5%
JavaScript 8.8% Rust 5.1% Perl 21.2%
Kotlin 3.4% Scala 3.5% Ruby 5.3%

The propensity to copy varies when using this project-level definition compared

to the blob-level definition (see Table 3.6).

For example, the propensity to copy in JavaScript-dominated projects is higher

than for JavaScript blobs in general (8.8% vs. 5.5%). This indicates a greater

likelihood of reuse within JavaScript projects compared to individual JavaScript

blobs from various projects. This could be attributed to the modularity and

strong reuse culture in the JavaScript ecosystem, where libraries and frameworks

are frequently shared and integrated. JavaScript projects often incorporate multiple

languages, such as HTML and CSS for web development or server-side languages for

backend functionality, enhancing reuse through shared components. The evolution

of JavaScript projects, involving various tools and libraries, also contributes to the

higher reuse rate within the project context.

In Perl-dominated projects, the propensity to reuse is higher than for Perl blobs

in general (21.2% vs. 18.5%). This suggests that blobs within Perl projects are

more likely to be reused compared to individual Perl blobs from different projects.

Perl’s strong culture of code reuse and sharing, exemplified by the Comprehensive

Perl Archive Network (CPAN), encourages the use and distribution of reusable code

65

modules. Perl projects often include a wide range of scripts and utilities shared across

different applications, enhancing reuse. Furthermore, Perl’s use in scripting, text

processing, and system administration often requires the reuse of common patterns

and libraries, contributing to the higher reuse rate within projects.

Conversely, R-dominated projects show a lower propensity to reuse compared to

R blobs in general (7.2% vs. 9.8%). This implies that individual R blobs are more

likely to be reused than blobs within R-dominated projects. R is primarily used

for statistical computing and data analysis, where specific scripts and functions are

reused across different analyses. However, R projects are often tailored to specific

datasets and analyses, resulting in lower overall reuse within the project context.

The specialized nature of many R projects, with unique data processing and analysis

pipelines, limits reuse compared to individual reusable components like functions and

libraries.

Java-dominated projects exhibit a lower propensity to reuse compared to Java

blobs in general (5.8% vs. 7.8%). This indicates that individual Java blobs are

more likely to be reused than blobs within Java-dominated projects. Java is widely

used across various domains, and reusable components like libraries and frameworks

are common across different projects. However, Java projects tend to be large and

complex, with specific architectures and dependencies that may limit cross-project

reuse. The high degree of customization and specificity in Java enterprise applications

reduces the reuse rate within the project context compared to the reuse of individual

Java blobs or libraries.

These analyses reflect the differing dynamics of code reuse in various programming

ecosystems. Understanding these differences can help improve strategies for fostering

code reuse and optimizing software development practices across different languages

and project contexts.

66

Binary Blob Analysis

Although previous analyses indicated that binary blobs are more likely to be reused,

we aimed to investigate whether this propensity varies across projects dominated by

different programming languages. At the blob level, it was not feasible to ascertain

the programming language of a binary blob. However, at the project level, such

analysis becomes possible. Therefore, we examined the reused binary blob ratio (the

percentage of reused binary blobs to total reused blobs) within each language and

compared it to the binary blob ratio (the percentage of binary blobs to total blobs)

within the same language, utilizing a t-test to identify any significant differences.

Consistent with the blob-level analysis, the reused binary blob ratio exceeds

the general binary blob ratio across all programming languages, indicating a higher

likelihood of reuse for binary blobs. This observation raises questions about language-

specific differences in binary blob reuse. Specifically, we hypothesize that binary blobs

are more frequently reused in certain languages compared to others. In other words,

we want to know if identifying a reused binary blob allows us to infer that it is more

likely to originate from projects written in particular languages.

Our findings confirm this hypothesis, as the proportion of reused binary blobs

varies significantly among different programming languages. Nevertheless, we

hypothesize that at least some of this difference stems from the general difference

in binary blob ratios in different languages and is not limited to reuse. Our statistical

tests reveal that the binary blob ratios indeed differ significantly across languages.

Consequently, the ratio of reused binary blobs also exhibits significant variation

among different languages, suggesting that this difference does not necessarily mean

varying binary reuse practices among them.

We want to determine if the higher number of reused binary blobs in a certain

language is solely due to the general prevalence of binary blobs in that language, or

if some languages tend to reuse more binary blobs. To control for this confounding

effect, we normalize the binary blob reuse ratio based on the total binary blob ratio.

67

Given the binary blobs ratio br in a project (binary blobs over total blobs), we defined

the reused binary ratio cbr (binary reused blobs to total reused blobs) to binary ratio

br metric. This metric (cbr/br) averaged 4.104 for all the projects in our sample.

By using a linear regression with the project’s primary language as a predictor, we

obtained the results shown in Table 3.147.

m =
cbr

br
=

cbc/cc

bc/c

m: normalized binary reuse metric

cbr: copied binary ratio

br: binary ratio

cbc: copied binary count

cc: copied count

bc: binary count

c: total count

Table 3.14: Reused Binary Blobs to Binary Blobs Metric

Language Metric p-value Language Metric p-value
C 3.33 0.810722 Rust 6.06 0.422024
C# 4.92 0.025270 Scala 5.38 0.545028
Go 5.73 0.173372 TypeScript 5.17 0.063922
JavaScript 7.04 < 2× 10−16 Java 4.91 0.000497
Kotlin 5.42 0.306698 PHP 4.49 0.035326
ObjectiveC 2.17 0.217673 Perl 3.32 0.975449
Python 2.19 0.005547 Ruby 3.51 0.951277
R 2.65 0.614773

Our analysis reveals that the reused binary blobs to binary blobs metric varies

across programming languages. Notably, C#, JavaScript, Python, Java, and PHP

7The complete coefficients and regression ANOVA tables are available in the online appendix.

68

exhibit statistically significant differences (p-value ¡ 0.05). In particular, JavaScript

projects demonstrate a higher tendency to reuse binary blobs, while Python projects

show a lower tendency. This suggests that in JavaScript-dominated projects, reusing

binary blobs is likely more efficient and cost-effective than reusing code. Conversely,

Python projects might benefit more from reusing code rather than binary blobs.

RQ4 Key Findings

1. Project properties significantly impact the probability of their blobs

being reused, with binary ratio, number of blobs, forks, authors, activity

duration, and stars having a positive impact.

2. Older projects are more likely to have introduced reused blobs.

3. Blobs residing in projects dominated by different programming languages

have varying probabilities of reuse, with TypeScript, Ruby, PHP, and

JavaScript having higher probabilities, and Rust, C, Perl, C#, Go, Scala,

R, Java, Kotlin, Python, and Objective-C having lower probabilities.

4. On average, 33.7% of projects have introduced at least one reused

blob, but this percentage varies significantly between languages, with

TypeScript (62.3%) and Ruby (51.2%) having the highest propensity,

and R (28.5%) and Perl (29.9%) the lowest.

5. The tendency to reuse binary blobs is much higher in JavaScript projects,

while Python projects show a lower tendency.

The project-level analysis reveals that various factors significantly influence the

likelihood of code reuse in open source software projects. Projects with more blobs,

binary blob ratio, and longer activity tend to exhibit higher reuse rates. This aligns

with our hypothesis that project health, activity, and popularity signals play an

important role in promoting reuse.

69

The variation in reuse likelihood across different programming languages under-

scores the influence of language-specific ecosystems and practices, consistent with

blob-level results. For instance, TypeScript and Ruby projects show the highest

propensity for reuse, which may be due to their robust ecosystems and strong

community practices that encourage code sharing and reuse. Conversely, languages

like Python and Perl have lower reuse rates, suggesting different reuse dynamics

and possibly a need for improved tools and practices to foster reuse. However, the

impact between the blob’s language and the language of the project it resides in

differs. This suggests that the underlying factors behind these differences are not just

technical aspects of the languages and their tools, but also their community culture

and practices.

The significant reuse of binary blobs, particularly in languages like JavaScript,

indicates that binary artifacts are valuable assets in software projects. This might be

due to the efficiency and ease of integrating precompiled binaries compared to source

code. However, the lower reuse rate of binary blobs in Python suggests that this

language’s ecosystem favors source code reuse, which could be due to its dynamic

nature and the extensive use of interpreted scripts. These findings have important

implications for the development and support of tools that facilitate reuse in different

programming languages. For languages like JavaScript, where binary blob reuse is

prevalent, enhancing asset libraries could be beneficial. In contrast, for languages like

Python, where code reuse is more advantageous, improving code package managers

would be more appropriate. This differentiation underscores the necessity for tailored

support tools to optimize reuse practices in various programming environments.

These findings highlight the impact of project context on reuse patterns and

suggest that different definitions and granularity levels can yield varying insights

into code reuse behaviors.

70

3.6 Limitations

3.6.1 Internal Validity

Commit Time

The identification of the first occurrence and consequently building the reuse timeline

of a blob is based on the commit timestamp. This time is not necessarily accurate as

it depends on the user’s system time. The dataset we utilized followed suggestions

by Flint et al. (2021b) and other methods to eliminate incorrect or questionable

timestamps. This increases the reliability of our reuse timeline. We also used version

history information to ensure the time of parent commits does not postdate that of

child commits Jahanshahi and Mockus (2024). This adds an extra layer of consistency

and validation, further enhancing the accuracy of our data.

Originating Project

The accuracy of origination estimates is highly reliant on the completeness of data.

Even if we assume that the World of Code (WoC) collection is exhaustive, it is possible

that some blobs may have originated in a private repository before being copied into a

public one. This means that the originating repository in WoC may not be the actual

creator of the blob. This scenario suggests that even with a comprehensive dataset,

there could be instances of code reuse that remain undetected, adding another layer of

complexity to understanding the full extent of reuse across open source projects. For

example, a 3D cannon pack asset8 was committed by 38 projects indexed by WoC.

However, that asset was originally created earlier in the Unity Asset Store Jahanshahi

and Mockus (2024).

By utilizing the extensive WoC collection, we provide a broad and detailed analysis

of code reuse, capturing a significant portion of open source activity even if some

instances of private-to-public transitions are missed. Additionally, the examples we

8https://assetstore.unity.com/packages/3d/props/weapons/

stylish-cannon-pack-174145

71

https://assetstore.unity.com/packages/3d/props/weapons/stylish-cannon-pack-174145
https://assetstore.unity.com/packages/3d/props/weapons/stylish-cannon-pack-174145

identified, such as the 3D cannon pack asset, highlight the practical implications and

real-world relevance of our findings, demonstrating the robustness of our analysis

despite potential data gaps. Our approach addresses the inherent challenges of

tracking code origination and reuse, offering a framework that can be refined and

expanded in future research to further improve accuracy and comprehensiveness.

Copy Instance

A unique combination of blob, originating project, and destination project might

not always accurately represent the actual pattern of reuse. This is because some

destination projects could potentially reuse the blob from a different source other

than the originating project. For instance, if we have three projects—A, B, and C—in

order of blob creation, project C might copy from either project A or B. Additionally,

certain blobs are not reused but are created independently in each repository, such

as an empty string or a standard template automatically generated by a common

tool Jahanshahi and Mockus (2024). These blobs are excluded by using the list

provided by WoC Ma et al. (2019).

Despite this limitation, our results remain significant. By recognizing the

potential for indirect reuse and independently created blobs, we provide a more

nuanced understanding of the reuse landscape, accounting for the complexity of code

propagation across projects. Excluding independently created blobs and utilizing

WoC’s comprehensive list ensures that our analysis focuses on genuine reuse instances,

enhancing the reliability of our findings.

3.6.2 External Validity

Blob-level Reuse

Our work focuses solely on the reuse of entire blobs, deliberately excluding the reuse

of partial code segments within files. While blob-level reuse is common, it only covers

a subset of the broader code reuse landscape. Blob-level reuse is more relevant to

72

scenarios where larger code blocks, consisting of entire files or even groups of files, are

reused compared to statement or function-level reuse. This means that our results

might have an implicit bias towards programming languages or ecosystems that rely

more heavily on complete files, potentially overlooking reuse practices prevalent in

languages that favor modular or snippet-based reuse.

This limitation also implies that different versions of the same file, even if they

differ by just one character, generate different blobs due to distinct file hashes.

Consequently, blob reuse does not equate to file reuse. Defining file reuse is challenging

because it is difficult to determine what constitutes equivalence between files in

different projects Jahanshahi and Mockus (2024). This could be a potential reason

for the higher level of reuse in binary blobs, as they are relatively harder to modify.

Despite these limitations, our results remain significant for several reasons:

• Prevalent Pattern: By concentrating on entire blob reuse, we address a

prevalent and impactful pattern in software development. This allows us to

provide valuable insights into a substantial portion of code reuse practices.

• Clarity and Precision: Analyzing entire blobs offers a clear and precise

method for identifying reuse, avoiding the ambiguity and complexity associated

with defining partial file reuse. This clarity enhances the reliability of our

findings.

• Efficiency and Scalability: Blob-level analysis is computationally efficient

and scalable, enabling us to process large datasets and draw meaningful

conclusions from extensive data. This scalability is important for comprehensive

empirical studies.

• Foundation for Future Research: Our work lays the groundwork for future

studies that can build on our findings to explore partial file reuse and other

nuanced aspects of code reuse. By addressing a well-defined scope, we provide

a solid foundation for subsequent research.

73

In summary, while our focus on blob reuse introduces certain limitations, it

also provides clear, scalable, and impactful insights into code reuse practices. This

targeted approach enables us to contribute valuable findings to the field, despite the

inherent complexities of defining and analyzing file reuse. Although blob-level reuse

is less granular than statement or method-level reuse, findings at the blob level would

also apply to sub-blob-level analysis, which should adjust for blob-level reuse. Future

studies are needed to investigate the extent to which different levels and types of code

reuse overlap or differ.

3.7 Conclusions

In conclusion, our study highlights the non-negligible role of copy-based reuse in

open source software development. By leveraging the extensive World of Code

(WoC) dataset, we provided a comprehensive analysis of code reuse, revealing that

a substantial portion of open source projects engage in this practice. Our findings

indicate that 6.9% of all blobs in OSS have been reused at least once, and 80% of

projects have reused blobs from another project. This widespread reuse emphasizes

the efficiency gains in OSS development but also raises concerns about security and

legal compliance.

The variation in reuse patterns across programming languages underscores the

influence of language-specific ecosystems and practices. Moreover, the higher

propensity for binary blob reuse suggests a need for tailored tools to support

different types of reuse. Future research should focus on improving the accuracy

and comprehensiveness of reuse detection and exploring the impact of partial file

reuse.

The survey results further enrich our understanding of reuse practices. We found

that many creators intended their resources for reuse, indicating a collaborative

mindset among developers. Reusers generally found the reused blobs helpful. Despite

these positive perceptions, reusers showed relatively low concern about potential bugs

74

and changes in the original files. This low level of concern could suggest either a high

level of trust in the quality of the reused code or a lack of awareness of the associated

risks. Additionally, the survey revealed a moderate interest in using package managers

to handle changes to reused files. This indicates potential demand for tools that can

streamline and manage code reuse more effectively.

Overall, our work provides insights into the patterns and factors affecting

code reuse, advocating for better management and support tools to enhance the

sustainability and security of OSS. By addressing the identified risks and leveraging

the collaborative nature of the OSS community, we can improve code reuse practices

and outcomes.

75

Chapter 4

Survey

Disclosure Statement

A version of this chapter was originally published as Jahanshahi et al. (2024b):

Mahmoud Jahanshahi, David Reid, and Audris Mockus. 2025. Beyond

Dependencies: The Role of Copy-Based Reuse in Open Source Software

Development. In ACM Transactions on Software Engineering and Methodology

(TOSEM). Just Accepted (January 2025).

Available at: https://doi.org/10.1145/3715907

This material is included in accordance with ACM’s policies on thesis and

dissertation reuse. © 2025 Copyright held by the owner/author(s). Publication

rights licensed to ACM.

Replication package available at: https://zenodo.org/records/14743941

4.1 Introduction

In this chapter, we want to answer this question: How do developers perceive and

engage with copy-based reuse? To do so, we obtain responses from 374 developers

about the code they have reused or originated. Most respondents write code with an

explicit expectation that it will be reused. Developers reuse code for several reasons

76

https://doi.org/10.1145/3715907
https://zenodo.org/records/14743941

and are not concerned with bugs in the reused code, but they are willing to use

package managers for reused code if such tools were provided. Overall, we find that

despite its questionable reputation due to inherent risks, code copying is common,

useful, and many developers keep it in mind when writing code.

The research question in this chapter aims to triangulate the quantitative results

from previous chapter and understand how developers perceive and engage with copy-

based reuse. While quantitative research often focuses on metrics such as frequency,

intensity, or duration of behavior, qualitative methods are better suited to explore

the beliefs, values, and motives underlying these behaviors Castleberry and Nolen

(2018).

Using a questionnaire for triangulation allows us to obtain self-reported data,

which can confirm or challenge the quantitative findings. This method helps identify

any discrepancies and provides a deeper understanding of participant behavior Denzin

(2017). In our study, the questionnaire included a direct question (“Did you create

or copy this file?”) to gather self-reported data on whether participants copied the

blob, offering a direct measure to compare against the quantitative results.

Additionally, based on the Social Contagion Theory (SCT), we hypothesize that

the characteristics of the destination project and/or author influence reuse activity.

However, treating all reusers the same could be problematic, as developers may have

fundamentally different reasons for reuse. Motivations for reuse can vary widely based

on individual needs, project requirements, and perceived benefits from the reused

code Mockus (2007); Frakes and Fox (1995). Our primary focus was to understand

these motivations to categorize different types of reuse, potentially providing more

insight into measuring susceptibility for future research. By categorizing motivations,

we aim to identify distinct patterns and factors influencing reuse behavior, facilitating

the development of targeted strategies to enhance code reuse practices. This approach

aligns with qualitative research methods that seek to explore complex phenomena

through detailed, contextualized analysis Creswell and Creswell (2017).

77

4.2 Methodology

To gain insights into the motivations behind copy-based reuse, we conducted an

online survey targeting both the authors of commits introducing reused blobs and

the authors of commits in the originating repositories. The survey aimed to capture

a range of experiences and perceptions related to copy-based reuse1.

4.2.1 Survey Content and Questions

The survey included questions about the nature of the file, why it was needed,

how it was chosen, and whether developers would use tools to manage reused files.

General questions about the repositories and developers’ expertise were also included.

Notably, the question about the reason for needing the file was open-ended to capture

unbiased and detailed responses about the motivations for reuse.

All the questions were optional, except for the very first one, which asked if the

respondent had created or reused the file. We chose not to directly ask why did

developers choose to copy to avoid provoking legal and ethical concerns about copy-

based reuse. For this reason, instead, we asked: “Why was this file needed? How did

it help your project?”2.

Furthermore, we asked developers if the project in which the file resides was

intended to be used by other people. Understanding whether creators intend for

their resources to be reused helps assess the cultural and strategic aspects of OSS

development. If a significant portion of creators design their code with reuse in mind,

it indicates a collaborative ecosystem where resources are shared and built upon.

We also asked a series of Likert scale (on a scale from 1 to 5) questions as follows.

• “To what extent did this file help you?” - Gauging how helpful creators

and reusers find the reused blobs provides quantitative data on the perceived

1The survey and its procedure was approved by our institutional review board, ensuring that it
adhered to ethical guidelines for research involving human subjects.

2See online appendix for survey questions.

78

value of the reused code. Comparing the ratings between creators and reusers

highlights any discrepancies or alignment in perceived usefulness.

• “To what extent were you concerned about potential bugs in this

file?” - Investigating reusers’ concerns about bugs in reused code sheds light

on the perceived risks associated with this practice. Understanding the level of

concern can indicate how much trust reusers place in the original code’s quality.

• “How important is it for you to know if the original file has been

changed?” - Understanding reusers’ concerns about changes in the original

files helps identify potential issues related to the stability and continuity of

reused code. Frequent changes can disrupt the functionality of dependent

projects.

• “How likely would you use a package manager which could handle

changes to this file if there was one?” - Understanding the likelihood

of reusers adopting a package manager if available provides insights into the

demand for tools that can streamline and manage code reuse.

4.2.2 Sampling Strategy

To ensure a representative and comprehensive sample, we stratified the data

along several dimensions. Stratified sampling ensures that all relevant subgroups

are adequately represented in the survey, enhancing the generalizability of the

findings Creswell and Creswell (2017). By considering multiple dimensions such as

productivity, popularity, copying patterns, file types, and temporal aspects, we ensure

a comprehensive analysis that captures the diversity of reuse behaviors in the OSS

community:

• Productivity and Popularity: Based on the number of commits and

stars, we differentiated between high and low productivity/popularity projects

(similar to RQ1-b).

79

• Copying Patterns: We distinguished between instances where only a few

files were copied versus multiple files, as these might indicate different reuse

behaviors.

• File Extension: We included various file types and programming languages

to capture a diverse range of reuse scenarios.

• Temporal Dimensions: We considered the blob creation time and the delay

from creation to reuse to understand temporal patterns in reuse behavior.

4.2.3 Survey Design

For each copy instance, we targeted the author of the commit introducing the blob into

the destination repository and the author of the commit in the originating repository3.

This dual perspective allowed us to capture both the originator’s and the reuser’s

viewpoints, offering a more comprehensive understanding of the reuse dynamics.

We conducted three rounds of surveys, progressively expanding the sample size

and refining the questions based on feedback and preliminary results. We chose to

conduct our survey in three steps to ensure a thorough and iterative approach to

understanding developer motivations behind copy-based reuse.

1. We handpicked 24 developers (12 creators and 12 reusers) for an initial survey

with open-ended questions. This round aimed to gather in-depth qualitative

data and identify key themes. This small, purposive sample size allows for deep,

exploratory insights, which are important for the initial stages of qualitative

research Guest et al. (2006).

2. The survey was sent to 724 subjects (329 creators and 395 reusers) with a mix

of open-ended and multiple-choice questions. This round helped validate and

refine the themes identified in the first round. The increased sample size in

this round provides more data to ensure that the themes and patterns observed

3Only if they had explicitly disclosed their email address on their public profile.

80

are not idiosyncratic but rather indicative of broader trends. This intermediate

sample size balances the need for more extensive data while still allowing for

qualitative depth Mason et al. (2010).

3. The survey was expanded to 8734 subjects (2803 creators and 5931 reusers),

with most questions being multiple-choice to facilitate quantitative analysis,

except for the open-ended question about the reason for needing the file. The

large sample size in this final round ensures that the findings are statistically

significant and generalizable across the broader population of developers

involved in copy-based reuse. This sample size aligns with recommendations

for achieving sufficient statistical power in survey research Krejcie and Morgan

(1970).

The reason behind the seemingly random numbers of survey subjects in the

three rounds is that after sampling our data, we had to perform data cleansing and

preparation to reach the survey target audience. This process normally caused some

samples to be removed. Initially, we chose sample sizes of 30, 1,000, and 10,000

respondents for the three rounds respectively, but after the data cleansing process,

the actual numbers were lower.

4.2.4 Thematic Analysis

The thematic analysis allows us to systematically identify patterns and themes

within qualitative data, providing deep insights into the reasons behind copy-based

reuse Braun and Clarke (2006). To analyze the survey responses, we followed a

structured thematic analysis process as outlined by Yin (2015):

1. Compiling: First author compiled all responses.

2. Disassembling: Each author individually analyzed and coded the responses to

identify ideas, concepts, similarities, and differences Austin and Sutton (2014);

Sutton and Austin (2015).

81

3. Reassembling: The coded responses were organized into meaningful themes by

each author independently, focusing on identifying different types of reuse Braun

and Clarke (2006).

4. Interpreting and Concluding: The authors discussed and compared the

themes, clarifying and organizing them to ensure a coherent and comprehensive

understanding. The final themes were then used to reclassify and interpret all

survey responses.

4.3 Results & Discussions

Across three rounds, we received 247 complete responses from reusers and 127 from

creators. There were also 360 and 178 partial responses, making the total of 607

and 305 responses from reusers and creators respectively. The results are shown in

Table 4.1.

Table 4.1: Survey Participation

Total Started Completed Response Rate Completion Rate
Creator 3,144 305 127 9.70% 4.04%
Reuser 6,338 607 247 9.58% 3.90%
Total 9,482 912 374 9.62% 3.94%

As will be discussed in Section 3.6.1, the identified originating repository might

not always be the true creator of the blob. 39% of developers identified as creators

reported reusing the blob from another source. Additionally, reusers might have

obtained the blob from another reuser and not the original creator (see Section 3.6.1).

Among the reusers who confirmed reusing the blob, 43% acknowledged the originating

project as the source, 48% reported copying it from elsewhere, and 9% did not answer

the question.

These findings provide important estimates: the fraction of reuse within open

source software (OSS) is at least 61%, and the fraction of reuse from originating

82

projects is at least 43%. This data is essential for understanding the dynamics of

code reuse within OSS, highlighting the significance of both direct reuse from original

projects and secondary reuse through intermediate projects.

Furthermore, only 60% of those identified as reusers confirmed reusing the blob,

while the remaining 40% claimed to have created it (see Table 4.2). This discrepancy

can be attributed to several factors. First, some individuals might indeed be the

original authors of the blob in the originating project, implying they have reused

their own resources. Second, this gap could be explained by activities in private

repositories (e.g., Developer A creates a file in a private repository, Developer B copies

it to a public repository, and then Developer A reuses it in another public repository).

Third, as mentioned in Section 4.2, concerns about potential licensing violations might

have made many reusers uncomfortable admitting the reuse explicitly. Additionally,

developers’ faulty memory could play a role, especially for reuse instances that

occurred a long time ago.

One potential area for further investigation could be examining the project owners

and commit authors for each copy instance to gain a better understanding of this

gap. However, this was not pursued further in this study as it was not the main

focus. Exploring these factors in future research could provide deeper insights into

the complexities of code reuse and attribution within open source software projects.

Table 4.2: Identified vs. Claimed Creators & Reusers

Identified Creators Reusers Total
Claimed Creator 77 (61%) 99 (40%) 176

Reuser 50 (39%) 148 (60%) 198
Total 127 247 374

Another dimension of the survey explored the intentions of creators for others to

reuse their artifacts. Sixty-two percent of creators indicated that their resources were

intended for reuse by others. When asked about the helpfulness of the particular

blob on a scale from 1 to 5 (with 5 being the most helpful), reusers rated the average

helpfulness at 3.81, while creators rated it at 4.24. This suggests that developers are

83

well aware of the reuse potential of their artifacts, even if the blob may be essential

primarily for their own projects.

In the background sections, we discussed the risks associated with this type of

reuse. We asked reusers if they were concerned about these risks as well. On a

scale from 1 to 5 (with 5 being the most concerned), the average concern about

bugs in the reused file was 1.83, and the average concern about changes in the

original file was 2.35. Several factors might contribute to the low level of concern

among developers, including trust in the original code’s quality or confidence in their

own testing processes. However, this lack of concern could facilitate the spread of

potentially harmful code, even if the creator fixes the original code. The fact that

reusers are not significantly worried about these risks amplifies the potential risk at

the OSS supply chain level.

Next, we asked participants how likely they would be to use a package manager

if one were available for the particular blob. On a scale from 1 to 5 (with 5 being

the most likely), the average likelihood of using a package manager was 2.93. This

indicates that although developers may not be very concerned about bugs or changes

(potential improvements), many would still use such a tool if it were available. This

suggests that “package-manager” type tools for refactoring or at least maintaining

reused code might gain traction if developed. These results are shown in Table 4.3.

Table 4.3: Likert Scale Questions (Scale 1 to 5)

Question (audience) Responses Average Median StdDev

How helpful? (creators) 156 4.25 5 1.15
How helpful? (reusers) 185 3.82 4 1.32
Concern about bugs? (reusers) 185 1.85 1 1.33
Concern about changes in the original file? (reusers) 187 2.33 2 1.56
Likelihood of using a package manager? (reusers) 184 2.89 3 1.64

Finally, the thematic analysis of reasons for reuse, specifically responses to the

question “why”, revealed eight themes from the 162 responses we received (see

84

Table 4.44). This analysis provides a nuanced understanding of the motivations

behind code reuse, highlighting several key themes.

Table 4.4: Identified Reuse Themes

Theme Description Frequency

Demo demonstration, test, prototype 14
Dependency part of a library 11
Education learning purposes 16
Functionality specific functionality 39
Own own reuse 2
Resource image, style, dataset, license 30
Template template, starting point, framework 14
Tool parser, plugin, SDK, configuration 23

As expected, one of the main reasons for reuse was to provide specific functionality.

This indicates that developers often reuse code to incorporate existing functionalities

into their projects, saving time and effort in development, a practice well-documented

in the literature Juergens et al. (2009). This underscores the importance of reusable

components in efficient software development.

Another observed theme was the reuse of various resources, including datasets,

instructions, license files, and graphical or design objects (e.g., PNG, JPEG, fonts,

styles). This aligns with the significant reuse of binary blobs identified in RQ1.

The inclusion of diverse resources indicates that developers often depend on readily

available materials to enhance their projects’ visual or functional aspects. While the

literature acknowledges this practice, our findings suggest a slightly higher emphasis

on resource reuse. This indicates that resource management might be more important

for developers than previously thought.

Reusing tools such as parsers, plugins, SDKs, and configuration files was

mentioned 23 times. This practice is noted for its practicality and efficiency in

setting up development environments and ensuring consistency across projects. This

4Since survey participants were chosen through stratified sampling, these frequencies do not
represent the actual data distribution.

85

highlights the role of auxiliary software components in streamlining development

processes and providing necessary infrastructure or functionality.

Assignments, school projects, learning objectives, and similar concepts were

another prominent theme. This emphasizes the role of code reuse in the software

development knowledge supply chain, as developers reuse existing code to understand

and learn new concepts.

Code reuse for demonstration, testing, and prototyping purposes was identified

14 times. This theme suggests that developers often reuse code to quickly create

prototypes or test scenarios without focusing on the quality, security, or licensing of

the reused code. The priority in these cases is to achieve rapid results. This aligns

with the findings by Juergens et al. (2009), that developers often clone code to create

prototypes and perform tests. Some of these quick prototypes, however, may end up

as active projects.

Templates, starting points, and frameworks were mentioned 14 times. Developers

often clone templates or frameworks to have a solid foundation for their projects, a

practice supported by findings of Roy and Cordy (2007). This approach leverages

existing structures to expedite development and ensure consistency.

Part of a library or dependency management was cited 11 times. This practice

is highlighted in studies that emphasize the importance of managing dependencies

within the development process, such as the study by Roy and Cordy (2007).

Although checking in library files is not considered best practice, many developers do

so to maintain specific versions and avoid potential issues with updates or changes.

This conscious decision highlights a trade-off between best practices and practical

needs.

Reusing one’s own code was mentioned twice. The theme of “own reuse” where

developers clone their own code for reuse in new projects, is less prominently featured

in the literature compared to other reasons for code cloning. Developers clone their

own code to ensure consistency, save time, and leverage previously written and tested

code. This practice is practical and efficient, especially when developers are familiar

86

with the code and its functionality. However, the literature does not emphasize

this reason as strongly. While studies acknowledge the broader concept of code

reuse, their focus is more on reusing code from external sources, libraries, or for

educational purposes Juergens et al. (2009); Roy and Cordy (2007). This discrepancy

suggests that “own reuse” might be an underexplored area in existing research. It

indicates that while developers recognize and practice it frequently, it may not be as

thoroughly documented or emphasized in the academic literature. This gap highlights

an opportunity for further investigation into how and why developers engage in “own

reuse” and its impact on software development processes.

There were also 13 instances where responses were either incomprehensible or the

respondent did not remember the file or the reason for reuse.

Key Findings

1. 39% of identified creators stated they reused the blob from another source.

2. Among reusers, 43% acknowledged the originating project (direct reuse),

while 48% copied from elsewhere (indirect reuse).

3. Reuse within the OSS landscape is at least 61%.

4. 60% of reusers confirmed reuse; 40% claimed creation.

5. 62% of creators intended their resources for reuse.

6. Reusers are not very concerned about potential bugs or changes in the

original file.

7. Reusers are willing to use a package manager if available.

8. Main reuse themes are: functionality, resources, tools, education,

demo/testing/prototyping, templates, dependencies, and own reuse.

87

The findings reveal that a non-negligible portion of developers engage in copy-

based reuse within the OSS community. This practice is common, with many reusers

sourcing code not directly from the original creators but through intermediaries.

Understanding these dynamics is important for improving the transparency and

traceability of reused code, which could potentially enhance code quality and security.

The discrepancies between identified and claimed creators highlight complexities

in attribution and ownership. Additionally, survey respondents’ replies are not always

accurate or true, which further complicates understanding the true origins of code.

This gap underscores the need for better tracking mechanisms within repositories

to accurately reflect code origins. Future research could delve deeper into these

factors, offering insights that could inform policy and tooling improvements in OSS

development.

Creators often intend their code to be reused, and both creators and reusers

recognize the utility of such artifacts. This positive perception suggests that

promoting reuse can be beneficial for the community, fostering collaboration and

innovation. However, the difference in helpfulness ratings indicates that there might

be room for improving the clarity and documentation of reusable code to better meet

reusers’ needs.

Despite the low concern about potential risks like bugs and changes, the moderate

interest in package management tools suggests an opportunity for developing solutions

that can help maintain and refactor reused code. Such tools could mitigate risks by

providing updates and improvements in a managed manner, enhancing the overall

reliability of reused code.

The thematic analysis of reuse motivations provides a comprehensive view of why

developers opt for copy-based reuse. Reusing for specific functionality underscores the

importance of modular and reusable code in software development. It also highlights

the potential benefits of well-documented and easily integrable code components that

can be readily reused by others.

88

This practice of including library files suggests a deliberate effort to maintain

stability and avoid the uncertainties that might come with updates or changes.

However, it also highlights a potential area for improvement in developer education

and best practices, as well as the importance of tools that can help manage

dependencies more effectively. These insights contribute to our understanding of

the motivations behind code reuse and the practical considerations developers face in

maintaining their projects.

While reusing for demo and testing can accelerate development and innovation, it

also raises potential risks. Developers may inadvertently propagate vulnerabilities

or violate licenses, leading to broader issues within the software supply chain.

Highlighting the importance of balancing speed and security during testing phases

can inform best practices and educational efforts.

Educational use underscores the educational value of code reuse. Reusing existing

code allows learners to understand real-world applications and coding practices,

fostering skill development. However, it also emphasizes the need for proper guidance

and resources to ensure that educational reuse is done ethically and effectively.

Encouraging educators to integrate lessons on best practices in code reuse can enhance

the quality of learning and adherence to legal and ethical standards.

The proportion of no meaningful answers and not recalling the file, indicate that

not all reuse instances are well-documented or remembered by developers. This

lack of clarity can hinder the understanding and traceability of reuse practices. It

highlights the need for better documentation and tracking mechanisms to ensure that

the reasons and contexts for reuse are transparent and well-understood. Implementing

such measures can improve the management of reused code and resources, reducing

potential risks associated with undocumented reuse.

89

4.4 Limitations

4.4.1 Survey Response Rate

The relatively low response rate to our survey may have been due to the perception

of the respondents that copying code is a sensitive subject. These concerns may

have impacted the responses even in cases when developers chose to participate. It

suggests that further work may be needed to design surveys that do not create such

impressions.

Additionally, since many of these reuse instances happened a long time ago,

developers might have forgotten about them. Therefore, it is important to conduct

regular surveys to capture the experiences while developers still remember their

practices.

90

Chapter 5

OSS License Identification at Scale

Disclosure Statement

A version of this chapter is accepted to be published as Jahanshahi et al. (2024a):

Mahmoud Jahanshahi, David Reid, Adam McDaniel and Audris Mockus. 2024.

OSS License Identification at Scale: A Comprehensive Dataset Using

World of Code. In Proceedings of the 22st International Conference on Mining

Software Repositories (MSR ’25). Just Accepted (January 2025).

This material is included in accordance with ACM’s policies on thesis and

dissertation reuse. © 2025 Copyright held by the owner/author(s). Publication

rights licensed to ACM.

Replication package available at: https://zenodo.org/records/14279932

5.1 Abstract

The proliferation of open source software (OSS) and different types of reuse has

made it incredibly difficult to perform an essential legal and compliance task of

accurate license identification within the software supply chain. This study presents a

reusable and comprehensive dataset of OSS licenses, created using the World of Code

(WoC) infrastructure. By scanning all files containing “license” in their file paths,

91

https://zenodo.org/records/14279932

and applying the approximate matching via winnowing algorithm to identify the

most similar license from the SPDX and Open Source list, we found and identified

5.5 million distinct license blobs in OSS projects. The dataset includes a detailed

project-to-license (P2L) map with commit timestamps, enabling dynamic analysis

of license adoption and changes over time. To verify the accuracy of the dataset

we use stratified sampling and manual review, achieving a final accuracy of 92.08%,

with precision of 87.14%, recall of 95.45%, and an F1 score of 91.11%. This dataset is

intended to support a range of research and practical tasks, including the detection of

license noncompliance, the investigations of license changes, study of licensing trends,

and the development of compliance tools. The dataset is open, providing a valuable

resource for developers, researchers, and legal professionals in the OSS community.

5.2 Introduction

As the open-source software (OSS) ecosystem has expanded rapidly, it has given rise

to a diverse array of projects, each characterized by different licenses and licensing

practices. A fundamental value of OSS lies in the ability to reuse code, either

through dependency management or by directly copying and potentially maintaining

(vendoring) it. Many licenses impose specific requirements on code usage, such

as the obligation to publish derived works under GPL licenses. The reuse supply

chains are often complex and difficult to trace. Consequently, accurately identifying

OSS licenses across the entire supply chain is crucial for understanding the legal

frameworks that govern OSS distribution and use. Such understanding is crucial

for ensuring license compliance, fostering collaboration, and mitigating risks within

software supply chains. Despite the significance of OSS licensing, existing studies

often fall short of covering the entire supply chain by focusing on specific ecosystems,

subsets of projects, or lack essential attributes needed to identify timing and project

information. Without this information, it becomes impossible to reconstruct the

92

dynamics or pinpoint the location of licenses within the supply chain Reid and Mockus

(2023).

This work makes a step in addressing these challenges by compiling a reusable

and comprehensive dataset of OSS licenses. To accomplish that we exploit the World

of Code (WoC) Ma et al. (2021) that contains version history from a nearly complete

collection of publicly accessible software projects. We start from all files that contain

“license” in their file paths and discover over 10M blobs (distinct strings) associated

with these files. For each we then find the most similar license from several “official”

license collections. To accomplish that we use winnowing algorithm, a fingerprinting

technique known for its ability to match text with minor variations, such as differences

in formatting, even in cases where the text is embedded or has undergone slight

modifications Serafini and Zacchiroli (2022). Our method successfully identifies and

maps over 5.5 million distinct license blobs to known licenses, generating a project-

to-license (P2L) map enriched with commit timestamps. Furthermore, we enhance

our dataset by incorporating the previously published dataset by Gonzalez-Barahona

et al. (2023).

This dataset fills critical gaps in the study of OSS licensing by providing: 1) a

large-scale, cross-platform resource for analyzing license adoption, change, evolution,

and compliance, 2) dynamic tracking capabilities through commit timestamps,

enabling longitudinal studies of licensing practices, and 3) a foundation for developing

tools and methods to address challenges in OSS license compliance and compatibility.

The dataset and its associated methodology have been designed with reusability

and scalability in mind, ensuring that it can be readily adopted by researchers,

practitioners, and legal professionals. By making the dataset openly available, we

aim to foster new research in software engineering and contribute to better practices

in the OSS ecosystem.

93

5.3 Related Work and Contributions

Understanding OSS licensing practices has been the focus of numerous studies,

ranging from license identification to compliance analysis. These studies have

contributed valuable insights but are often limited in scope, scale, or methodology.

5.3.1 Comprehensive Identification of License Blobs

Previous studies like Wu et al. (2024) and Xu et al. (2023) focus on explicit license

declarations in metadata files, while others, such as Feng et al. (2019), use static

analysis to detect embedded license texts in binaries. While these methods and

datasets advance license text identification, they do not address partial matches or

embedded license texts, which are common in OSS projects.

In contrast, our work leverages the winnowing algorithm, a robust fingerprinting

method, to identify both partial and full matches of license blobs across millions

of files, even when license texts are embedded or slightly modified. This approach

enhances precision and ensures comprehensive identification, capturing both standard

and non-standard licensing practices in OSS repositories.

5.3.2 Broad Scale and Scope of Analysis

Prior studies have often been limited in scope, focusing on specific platforms or

datasets. Large-scale efforts have identified license files but overlooked contextual

information, such as project associations or temporal data. For example, Zacchiroli

(2022) introduced a dataset of 6.5 million blob-license text variant tuples (spanning

4.3 million unique blobs), enabling analyses of text diversity and NLP-based modeling

of license corpora. However, their work focuses on cataloging text variants rather than

linking licenses to their usage within projects. Similarly, Gonzalez-Barahona et al.

(2023) documented 6.9 million blob-license tuples (representing 4.9 million unique

94

blobs), but the emphasis remained on cataloging rather than exploring connections

to broader supply chain dynamics.

Our study expands the scope of previous research by analyzing the entire OSS

landscape through the World of Code (WoC) infrastructure. We match over 5.5

million license blobs to known licenses and map them to specific OSS projects

and their histories. This comprehensive project-to-license (P2L) mapping facilitates

detailed tracking of licensing practices across platforms, bridging the gap between

text-level variability and actionable project-level insights.

5.4 Methodology

5.4.1 World of Code Infrastructure

World of Code (WoC)1 is an infrastructure designed to cross-reference source code

changes across the entire OSS community, enabling sampling, measurement, and

analysis across software ecosystems Ma et al. (2019, 2021). It functions as a

software analysis pipeline, handling data discovery, retrieval, storage, updates, and

transformations for downstream tasks Ma et al. (2021).

WoC offers maps connecting git objects and metadata (e.g., commits, blobs,

authors) and higher-level maps like project-to-author connections, author aliasing Fry

et al. (2020), and project deforking Mockus et al. (2020). We use WoC to identify

all license blobs and their associated projects2, employing the concept of deforked

projects Mockus et al. (2020) to avoid biases from forks and duplicates.

5.4.2 License Blob Identification

We start by using the blob-to-filepath maps (b2f) in WoC to list all filepaths for

each blob, specifically searching for those with “license” in their filepath. Using blob

1https://worldofcode.org
2Version V, latest at the time of this study.

95

https://worldofcode.org

hashes ensures that any license blob, even if associated with a “license” filepath in

only a single project, will still be identified. Using blob-to-project maps (b2P), we

then identify all projects containing that blob, which means that we do not require

the blob to have the “license” filepath in every project. This ensures high recall

in detecting potential license-related blobs by leveraging the collective metadata of

public repositories. This approach resulted in over 10 million distinct potential license

blobs.

Since there are relatively few known licenses, we anticipate that most of these

blobs are similar licenses with minor variations, such as differences in whitespace,

formatting, or non-essential information. The main challenge is matching these varied

license blobs to known licenses.

We use licenses from the Open Source Initiative3 and the Software Package Data

Exchange (SPDX)4, which include 103 and 635 licenses, respectively. To match the

10 million potential license blobs with these known licenses, we apply winnowing, an

efficient local fingerprinting algorithm Schleimer et al. (2003).

Winnowing is a document fingerprinting technique often used in plagiarism

detection. It generates fingerprints by sliding a window over hashed words in a

document and selecting the smallest hash value in each window. This reduces the

data needed for document representation, enabling faster and more memory-efficient

comparisons while maintaining accuracy.

Using winnowing, we matched over 7 million potential license blobs to one of

the known licenses (see Table 5.1). We assess the reliability of these matches by

calculating a matching score, defined as the number of shared winnowing signatures

divided by the total winnowing signatures between two files. This score, as shown

in Equation 5.1, measures the similarity between the potential license blob and the

known license, helping to verify the match’s accuracy.

3https://github.com/OpenSourceOrg/licenses
4https://github.com/spdx/license-list-data

96

https://github.com/OpenSourceOrg/licenses
https://github.com/spdx/license-list-data

S =
c(A ∩B)

c(A ∪B)
(5.1)

S: Matching score.

A: Set of signatures in document A.

B: Set of signatures in document B.

c(X): Count function for the number of elements in set X.

Table 5.1: Potential License Blobs Matching Scores

Count Percentage Percentage
(Relative to) (Overall)

Potential Blobs 10,093,268 100% 100%
Winnowing 9,794,559 97% (Potential Blobs) 97%
Matched 7,167,046 73.2% (Winnowing) 71%

. .
S <= 0.2 795,532 11.1% (Matched) 7.9%
0.2 < S <= 0.4 239,091 3.3% (Matched) 2.4%
0.4 < S <= 0.6 264,667 3.7% (Matched) 2.6%
0.6 < S <= 0.8 435,283 6.1% (Matched) 4.3%
0.8 < S <= 1 5,432,473 75.8% (Matched) 53.8%

We categorized matching scores into five groups: below 20%, 20-40%, 40-60%,

60-80%, and above 80%. As shown in Table 5.1, 97% of blobs generated winnowing

signatures. We randomly sampled 30 blobs from the 3% that did not and manually

confirmed they had no meaningful content. Of the 9.7 million blobs, 73% matched a

known license (sharing at least one winnowing signature), with 75% of these matches

scoring above 80%.

To assess match reliability, we sampled 20 blobs from each score group and

manually compared them to the known license using ‘diff‘. Given the manual

nature of the verification process, choosing 20 samples for each bucket provides a

manageable workload while still offering a sufficient range of data to detect patterns

97

and inconsistencies. Our investigation revealed that matches in buckets with scores

below 80% were not reliable enough, showing meaningful differences.

We then focused on scores above 80% and conducted another stratified sampling

based on score range (80-85, 85-90, 90-95, 95-100) and the number of signatures

(above/below 100). In each group, 20 matches were sampled. The differences fell

into three main categories: 1) identical content with different formatting, 2) identical

content with non-license text, and 3) identical content with additional clauses.

The second category was acceptable, as we do not claim a blob contains only the

matched license. However, the third, with additional clauses, was concerning as it

could alter the license’s nature. Detailed results are in Table 5.2.

Table 5.2: Matching Score Samples

Signatures Score Total Count (%) Gr. 1 Gr. 2 Gr. 3

<= 100

80-85 85,294 (1.6%) 17 3 0
85-90 150,046 (2.8%) 17 3 0
90-95 197,875 (3.6%) 20 0 0
95-100 4,502,264 (82.9%) 20 0 0

. .

> 100

80-85 67,235 (1.2%) 10 9 1
85-90 52,894 (1%) 17 2 1
90-95 60,583 (1.1%) 18 2 0
95-100 316,282 (5.8%) 20 0 0

We observed only two mismatches: one in the 80-85% range and one in the 85-

90% range (both in the over 100 signatures group). Based on this, we determined

that setting the threshold at 85% ensures reliable license identification. Above this

threshold, critical mismatches—where additional clauses could alter the license—are

extremely rare. Since over 90% of identified blobs had fewer than 100 winnowing

signatures, the 85% threshold balances comprehensiveness and precision, capturing

most valid matches while minimizing misleading results. This approach aligns with

prior research emphasizing high similarity thresholds to reduce false positives in

98

textual matching (e.g., Kapitsaki et al. (2017)). As a result, 5,294,666 distinct blobs

were matched with a known license.

For the remaining 2.5 million potential blobs with no matches, we randomly

sampled 30 and manually investigated them. Only 5 contained license-related content,

either mentioning a license name or linking to a license URL. The other 25 were

unrelated to licenses.

5.4.3 Project to License Mapping

To create the project-to-license (P2L) map, we use the 5.5 million matched license

blobs and join them with WoC’s blob-to-time project (b2tP) map, which links blobs to

the projects they were committed to, along with commit timestamps. This produces

a table mapping each project to a known license and the time of the commit (see

Figure 5.1).

However, a blob’s presence in a project’s latest status cannot be confirmed solely

from commit history, as it might have been removed later. To address this, we use

the project-to-last-commit (P2lc) and tree-to-objects (t2all) maps from WoC. The

P2lc map links projects to their last commit at the time of the latest WoC update

(Version V), allowing us to retrieve the list of all blobs in a project’s current state by

joining P2lc, c2dat (commit-to-tree), and t2all maps. This method not only provides

all the times at which a blob was committed to a project but also verifies whether it

still exists in the project.

The final table is saved as a semicolon-separated file containing three fields5:

Project ID;License;Commit T ime

The Commit T ime field is in the “YYYY-MM” format and represents the commit

timestamp when the license blob was committed to the project. This field may also

have an “invalid” value, indicating that the commit timestamp was not valid (e.g.,

5For more information on accessing this data, please visit https://github.com/woc-hack/

tutorial

99

https://github.com/woc-hack/tutorial
https://github.com/woc-hack/tutorial

Figure 5.1: License Identification Data Flow Diagram

a future time due to discrepancies in the user’s system time). Additionally, if the

license blob was found in the latest status of a project, the time is “latest”.

5.4.4 P2L Verification

For the Project-to-License (P2L) verification, we initially sampled 1,000 projects

from approximately 130 million to evaluate the effectiveness of our license assignment

methodology. This sample size was chosen to provide a statistically significant subset

for manual verification while balancing the need for reliability with the practical

constraints of manual inspection.

We stratified the sample into three groups: 1) Projects with matched licenses,

where our automated process successfully matched license blobs to known licenses,

2) Projects with license blobs but no matched licenses, where license blobs were

100

identified, but no matching known license could be confirmed, and 3) Projects without

any license blobs, where no license blobs were detected during the automated search.

This sampling approach was designed to cover a wide range of license detection

scenarios, ensuring a comprehensive evaluation. Graduate students manually

reviewed the sampled projects as part of a class assignment, focusing on verifying

the license information. Out of the 1,000 sampled projects, we received meaningful

responses for 580 projects, distributed as follows: 291 with matched licenses, 139

with license blobs but no matches, and 150 without any license blobs. The results

are presented in Table 5.3.

Table 5.3: License Detection Confusion Matrix Across Stages

Stage Initial Adjusted Refined

License No License License No License License No License

Matched 210 81 210 31 210 31
Not Matched 22 267 22 267 10 267

Accuracy 82.24% 90.00% 92.08%
Precision 72.16% 87.14% 87.14%
Recall 90.52% 90.52% 95.45%
F1 Score 80.31% 88.79% 91.11%

Our license detection method demonstrated reasonable performance with an initial

accuracy of 82.24%, precision of 72.16%, recall of 90.52%, and an F1 score of 80.31%.

However, several factors must be considered when interpreting these results: first,

of the 81 projects identified as having matched licenses, 39 no longer exist on GitHub,

preventing license verification, and second, in 11 projects, the license was absent in

the latest status, which does not necessarily indicate a false positive, as the license

could have been removed after an earlier commit. After excluding these cases, we

are left with 31 false positives. Adjusting for these, our revised performance metrics

show significant improvement: accuracy increases to 90.00%, precision to 87.14%,

recall remains at 90.52%, and the F1 score rises to 88.79%.

For the 22 false negatives (where licenses were not detected), further investigation

revealed that only 10 had a missed license blob, which was matched but fell slightly

101

below our 85% threshold. The remaining 12 projects only referenced a license (e.g., in

the README) without including the actual license file in the repository, so they were

not expected to be matched by our method. By excluding these 12 false negatives,

which fall outside our method’s intended scope, we can more accurately assess its

performance. The recalculated metrics show an accuracy of 92.08%, precision of

87.14%, recall of 95.45%, and an F1 score of 91.11% (see Table 5.3).

5.4.5 Complementing Data

Although our P2L map already demonstrated strong performance in manual ver-

ification, we incorporated the previously published dataset by Gonzalez-Barahona

et al. (2023) to enhance data comprehensiveness. Their dataset includes only blobs

and their detected licenses using ScanCode Ombredanne (2022). We filtered data to

blobs with license detection confidence 95% or higher and applied the same process

described earlier to map these blobs to commits and projects, enabling us to determine

the time and project in which each license was committed. The merged table (see

Figure 5.1) includes a column indicating the license detection method for each entry:

either our method (1-WoC) or the Software Heritage dataset method (2-SH) Gonzalez-

Barahona et al. (2023).

5.5 Applications

The dataset described in this work provides a robust foundation for addressing key

challenges in open source software (OSS) licensing. Below, we discuss use cases

supported by the dataset and illustrate them with examples from ongoing research

conducted by the authors, which are currently under review and cannot be cited

directly.

102

5.5.1 Ensuring License Compliance

Managing license compliance is a critical issue in OSS, where licensing conflicts or

noncompliance can lead to significant legal and ethical challenges. This dataset

enables research into understanding and mitigating compliance risks. For instance,

the dataset has been used to analyze how licensing conflicts arise from code reuse

across OSS projects. These insights underscore the need for advanced compliance

tools that leverage comprehensive project-to-license mappings to detect and address

potential license violations.

5.5.2 Analyzing Licensing Trends and Practices

Understanding how OSS licenses are selected and evolve over time is essential for

improving licensing practices and fostering innovation. The dataset supports large-

scale analyses of license adoption trends, revealing patterns and the factors influencing

license choices (e.g. Vendome et al. (2017)). For example, it has been used by the

authors to explore the dynamics of license adoption, examining the role of social,

technical, and ideological factors in shaping these decisions. The dataset’s extensive

coverage allows researchers to track the evolution of licenses within and across OSS

ecosystems, providing actionable insights for developers and policy-makers.

5.5.3 Supporting Ecosystem Studies and Tool Development

The dataset’s comprehensive project-to-license mapping has broad applicability in

supporting ecosystem studies and tool development. Such applications include

investigating how licensing practices influence collaboration and innovation in OSS

communities, enabling the creation of automated tools for license verification,

detecting noncompliance, recommending suitable licenses, and providing a resource

for educating developers on licensing implications and best practices.

103

5.6 Limitations

Scope of License Identification The current methodology focuses on files

explicitly named “license” or located in license-related directories, which may miss

license information embedded in source code headers, build scripts, or files with

unconventional names. These gaps particularly affect older or unconventional OSS

projects. Expanding the search scope and using natural language processing (NLP) or

pattern recognition could improve coverage. To partially address this, we incorporate

the dataset by Gonzalez-Barahona et al. (2023) to enhance comprehensiveness.

Implicit Licensing Practices Implicit licensing practices, such as referencing

licenses by name or URL in README files or documentation, are not captured,

potentially leaving gaps for permissively licensed projects. Future work could parse

these files to link references to known licenses.

Data Completeness and Noise Finally, while robust heuristics minimize errors,

some non-license files may be misidentified, and legitimate licenses in non-standard

formats could be excluded. Feedback mechanisms and automated quality checks could

further enhance reliability.

104

Chapter 6

The Intersection of Copy-Based

Reuse and License Compliance

Disclosure Statement

A version of this chapter is based on work that has been submitted for publication.

The manuscript is currently under review.

This material is included in accordance with academic guidelines on thesis and

dissertation reuse.

Replication package available at: https://zenodo.org/records/14061115

6.1 Abstract

As other creative work, source code is protected by copyright. The owner can

license the work, e.g., to permit copy and other kinds of use, and even start legal

proceeding against license violators. However, source code can be reused in subtle

ways, e.g., via copying without explicit package manager dependencies, making it

hard to reason about potential license noncompliance. Using the World of Code

infrastructure approximating the entirely of open source software, in this paper we

105

https://zenodo.org/records/14061115

create a copy-based code reuse network mapping direct copying across projects, and

use it to quantify the extent of potential license noncompliance across the entire open

source ecosystem. In addition, we estimate regression models to understand whether

code copying is affected by the origin project’s license, and, if so, how it varies with

other project characteristics.

We find that code in repositories with permissive licenses, such as MIT and

Apache, shows higher likelihood of reuse across programming languages. In contrast,

copyleft licenses, like the GPL, exhibit mixed effects. Public domain licenses, despite

their aim of allowing unrestricted use, are associated with lower likelihood of copy-

based reuse. A widespread potential license noncompliance appears to accompany

copy-based reuse, with 39.4% of project combinations at potential noncompliance

risk, particularly when licenses are unclear or absent. Our findings reveal that

only 2.43% of reuse detected through the copy-based network was discoverable via

dependency analysis, highlighting the limitations of existing dependency-tracking

tools in capturing copy-based reuse. This gap underscores the need for more

advanced methods to ensure license compliance in open source projects, from nudging

developers to set appropriate license templates to flagging potential noncompliance

due to license changes across copy origin and destination projects.

6.2 Introduction

Open Source Software (OSS) plays a critical role in software development and

distribution across various industries. A fundamental aspect of OSS is its licensing,

which dictates how software can be reused, modified, and redistributed. OSS licenses

are typically categorized into permissive licenses (e.g., MIT, Apache), copyleft licenses

(e.g., GPL), weak copyleft licenses (e.g., LGPL), public domain licenses, and others

with specific conditions (e.g., Creative Commons). Each type of license imposes

distinct obligations on developers and users, making the choice of license a pivotal

factor in determining the extent and manner in which a project’s code can be reused.

106

Moreover, creative works, such as code, are protected by copyright by default if no

license is specified. Despite these legal restrictions, code without a license is often

copied in practice Vendome et al. (2018) and even used to train Large Language

Models Xu et al. (2024).

This study aims to enhance understanding of the extent to which, and the

contexts in which, different OSS license types affect software reuse in copy-based

reuse networks, where artifacts are copied from one repository to another.

While prior research has primarily focused on dependency-based reuse, where

projects formally declare dependencies on external libraries, copy-based reuse—where

code is directly copied between projects—introduces unique challenges regarding

license compliance and tracking, because there is typically no trace of the copying.

Studies highlight that identifying the exact origin of reused OSS components remains

a significant challenge, underscoring the need for more effective tools to track code

provenance, particularly to ensure compliance with copyleft licenses Tuunanen (2021).

Although copy-based reuse is common in OSS development Jahanshahi et al.

(2024b), it is often overlooked in studies that focus exclusively on dependencies

managed through package managers Fendt and Jaeger (2019); Phipps and Zacchiroli

(2020); German et al. (2010). While the decision to copy an artifact from an upstream

project may be driven by factors largely unrelated to license compatibility, the type

of license should still play a significant role, particularly if the license of the copied

artifact is ultimately incompatible with that of the reusing project.

Specifically, we answer the following research questions:

• RQ1: How does the license type of the upstream project affect the probability

of its artifacts getting copied?

• RQ2: How widespread is potential license noncompliance in copy-based reuse

network?

We begin by reviewing the literature on code copying to identify key factors

driving this phenomenon. Next, we use the World of Code (WoC) infrastructure,

107

which provides comprehensive, cross-referenced data on the global OSS ecosystem,

to operationalize these factors and create a curated dataset of copying instances,

including the licenses of both upstream and downstream projects. Finally, we fit a

model that examines the probability of a project’s artifacts being reused based on its

license, while controlling for other contextual factors.

Our findings indicate that permissive licenses, such as MIT and Apache, are con-

sistently associated with higher reuse rates across multiple programming languages.

In contrast, copyleft licenses, like GPL, display more complex reuse patterns. While

they are associated with higher rates of reuse in certain cases, such as in JavaScript

projects, they are generally associated with lower reuse when factors like project

size and activity are considered. Interestingly, projects under public domain licenses,

which are intended to permit unrestricted reuse, tend to experience lower reuse rates.

This suggests that legal uncertainties surrounding these licenses may deter developers

from reusing the code.

One notable issue we uncovered is the prevalence of license noncompliance

in copy-based reuse, especially when projects either lack a clear license or use

incompatible licenses, posing legal risks for developers and organizations alike.

License noncompliance in software reuse is not just a theoretical concern but has

resulted in significant legal disputes in the software industry. A notable example is

the Jacobsen v. Katzer case Shagall and Breithaupt (2008), wherein the court upheld

the enforceability of open source licenses under copyright law. Jacobsen, the creator

of the Java Model Railroad Interface (JMRI) project, sued Katzer for incorporating

JMRI’s code into commercial software without adhering to the terms of the project’s

Artistic License. The court’s decision affirmed that violating open source license terms

constitutes copyright infringement, emphasizing the legal obligations developers have

when reusing code.

Another case illustrating the repercussions of license noncompliance involves the

GPL-licensed BusyBox OSS project Software Freedom Law Center (2007). BusyBox

developers filed lawsuits against several companies for distributing their software

108

within commercial products without complying with GPL terms. These companies

failed to provide access to the source code and did not include the GPL license text

with their products, both required under the GPL. The legal actions often resulted

in settlements where the offending companies agreed to release the source code and

comply with the GPL terms.

These real-world examples underscore the importance of understanding and

adhering to license terms, especially in copy-based reuse where code is directly

replicated between projects. Noncompliance not only exposes developers and

organizations to legal risks but also undermines the collaborative ethos of the OSS

community German et al. (2010). It can deter developers from contributing or reusing

code due to fears of infringement, thereby stifling innovation and collaboration.

Therefore, ensuring proper license compliance is essential for fostering trust and

sustainability in open source software development.

Finally, our study reveals that traditional tools focused on dependency tracking

fail to capture a substantial number of reuse cases occurring through direct code

copying. This highlights the need for more sophisticated tools capable of detecting

direct code copying at scale, to improve license compliance monitoring within the

OSS ecosystem.

6.3 Related Work and Knowledge Gaps

6.3.1 Software Reuse

In open source software, the reuse within supply chains can be categorized based on

how open source components are integrated and used in software projects Mockus

(2019b, 2022, 2023).

109

Dependency-Based Reuse

This category involves incorporating open source libraries and packages as depen-

dencies in a project. Package managers like NPM for JavaScript, pip for Python,

or Maven for Java are typically used to manage these dependencies. If not properly

overseen, reliance on these dependencies can introduce vulnerabilities and risks Yan

et al. (2021).

Copy-Based Reuse (Our Focus)

In copy-based reuse, developers directly copy code from OSS projects, e.g., a utility

function Jahanshahi et al. (2024b), into their own projects. While this approach

is quick, it can lead to challenges in maintaining and updating the copied code.

Therefore, it’s essential to track and manage these copies to ensure they remain

secure and up-to-date Ladisa et al. (2023).

Previous studies have identified several factors that influence the likelihood of

a project’s artifacts being reused through copy-based methods Jahanshahi et al.

(2024b). One key factor is project activity, typically measured by the number

of commits. Projects with a higher commit count are generally more active and

frequently updated, making them attractive to developers seeking reliable and current

code snippets Koch and Schneider (2002). Another important factor is project size,

often indicated by the number of files. Larger projects tend to offer a broader range

of functionalities and code examples, increasing the likelihood that other developers

will find useful code for reuse. This extensive codebase provides a valuable resource

for copy-based reuse Mockus (2007). The collaborative nature of a project also plays

a role. Metrics such as the number of authors reflect the volume and diversity

of expertise within a project’s contributor base. Projects with more contributors

tend to benefit from enhanced innovation and decentralized communication, which

can improve the development process Crowston and Howison (2005) and increase

the likelihood of reuse Jahanshahi et al. (2024b). Community engagement and

110

popularity, often approximated by metrics such as the number of forks and stars

on platforms like GitHub, further explain reuse potential Tsay et al. (2014); Borges

et al. (2016). Projects with more forks and stars are more visible and reputable within

the developer community, increasing trust and making their code more likely to be

reused Jahanshahi et al. (2024b). These indicators reflect community interest and

endorsement, enhancing the project’s appeal as a resource.

The maturity and stability of a project, assessed through its duration of

activity, age, and activity fluctuations (burstiness), also correlate with its reuse

potential Jahanshahi et al. (2024b). Mature projects with sustained activity over a

long period are often viewed as stable and reliable. Consistent development without

erratic bursts signals a well-maintained project, increasing the likelihood that its code

will be reused Gamalielsson and Lundell (2014). Additionally, a project’s community

culture and technical characteristics—approximated by its primary programming

language—play a significant role in explaining its reuse potential Jahanshahi et al.

(2024b). Different programming languages vary in popularity, community support,

and ecosystem maturity Bissyandé et al. (2013). Projects written in widely adopted

languages such as Python, JavaScript, or Java are more accessible to a larger pool

of developers, thus increasing the chances of their code being reused. Moreover, the

programming language reflects the community’s coding conventions, documentation

practices, and collaboration norms, which can make the project more appealing for

developers looking to incorporate its code into their own work.

Finally, the literature highlights that permissive licenses, such as MIT and

BSD, are generally associated with higher reuse rates compared to restrictive licenses

like GPL Kashima et al. (2011); Brewer (2012). Additionally, a delay in license

adoption for a project might increase the chances of its artifacts being reused as

the absence of a clear license can create ambiguity, leading developers to assume

permissibility, thus fostering reuse even if unintended by the project maintainers.

However, these conclusions are based on simple statistical analyses that do not

account for the critical factors influencing reuse discussed earlier. Therefore, it is

111

possible that the observed effect of licensing on reuse is not as strong as suggested, or

that other variables may be driving these patterns. A more comprehensive analysis—

one that controls for these additional variables—is necessary to determine whether

licensing independently influences reuse or if the previously-reported results are

mostly shaped by other project characteristics. Towards answering RQ1, we posit

two concrete hypotheses:

• Hypothesis (H1a): Projects using permissive licenses, when controlling for

other context factors, have a higher likelihood of their artifacts being reused via

copying.

• Hypothesis (H1b): Projects using restrictive licenses, when controlling for

other context factors, have a lower likelihood of their artifacts being reused via

copying.

6.3.2 Open Source Licenses

There are many licenses for open source code, each with its own requirements and

restrictions.

Permissive licenses, such as MIT and Apache-2.0, typically allow for extensive

reuse with few restrictions. They usually require only attribution and permit

integration with other license types, offering significant flexibility Laurent (2004).

In contrast, copyleft licenses, such as the GPL, require that any derivative work

be distributed under the same license. Noncompliance can occur if copyleft-licensed

code is combined with code under a non-copyleft license without adhering to the

copyleft terms. For example, incorporating GPL-licensed code into proprietary

software without releasing the combined code under the GPL would violate the

license Stallman (2002). This principle ensures that all modifications and derivative

works remain free, preserving software freedom Lessig (2004). Weak copyleft

licenses, such as the LGPL, are less restrictive than full copyleft licenses. They

permit linking with proprietary software without requiring the entire work to be

112

open sourced, as long as the LGPL-covered components remain modifiable and

separable. However, it’s important to carefully consider the terms to avoid violations,

particularly regarding modification and distribution Rosen (2005). Conditional

open licenses, including many Creative Commons licenses, offer specific conditions

for use. For example, CC-BY licenses require attribution, while CC-BY-SA licenses

require derivative works to be licensed under the same terms. These licenses can

include share-alike clauses, which impact how code can be distributed, especially

if combined with other licenses with different terms. While these licenses are

more commonly used for creative works than software, they can still impact code

distribution. Public domain and license-free software code generally impose

no restrictions on reuse, as they are not protected by copyright. Works in the

public domain can be freely used, modified, and distributed. Finally, projects

with no explicit license (not to be confused with license-free) present significant

legal risks. By default, all rights are reserved under copyright law, meaning that

reuse, modification, or distribution may be restricted without the author’s explicit

permission Välimäki (2005). This lack of clarity can lead to potential legal issues, as

the permissions for using the software are not clearly defined.

6.3.3 Open Source License Compliance

License compatibility is a critical concern in OSS development. Projects often

encounter significant difficulties when integrating components with conflicting li-

censes Di Penta et al. (2010). Ensuring compliance with open source licenses is

also a major concern for companies incorporating OSS into their products. German

et al. (2010) emphasized the need for auditing OSS distributions to ensure adherence

to license terms, especially in scenarios where components with varying licenses are

integrated. Wu et al. (2024) conducted a large-scale empirical analysis on the usage

of open source licenses, highlighting the practices and challenges developers face.

Their findings revealed frequent misunderstandings and misapplications of licenses,

113

especially in large-scale projects. Cui et al. (2023) created a tool called DIKE to

detect license conflicts in over 16,000 popular free and OSS software, finding that

over 25% had conflicts. In addition, their study suggests that these conflicts often

arise from misinterpretations of license terms and the challenges of handling multi-

license environments. Finally, Mathur et al. (2012) conducted an empirical study on

license violations resulting from code reuse across 1,423 projects, uncovering numerous

instances of license incompatibilities.

In addition, many developers involved in OSS projects do not fully understand

the implications of the licenses they use. Almeida et al. (2019, 2017) revealed gaps

in developers’ knowledge of licensing issues, which can result in non-compliance,

particularly in complex projects that integrate multiple OSS components. Moraes

et al. Moraes et al. (2021) and Qiu et al. Qiu et al. (2021) focused on the JavaScript

ecosystem, investigating the effects of multi-licensing and license violations related

to dependencies. Their findings show that the complex network of dependencies in

JavaScript projects frequently results in unintentional license violations, highlighting

the need for improved dependency management practices. Feng et al. Feng et al.

(2019) investigated license violations in large-scale binary software, revealing that

many projects unintentionally breach license terms due to the complexities involved

in binary distribution. Finally, Papoutsoglou et al. (2022) examined licensing

questions on Stack Exchange sites, their results showing that many developers find it

challenging to grasp licensing terms, leading to frequent inquiries about compliance

and compatibility issues.

Studies have also demonstrated that a project’s declared license is not always

reliable German et al. (2010); Reid and Mockus (2023); Wolter et al. (2023). For

example, in a study of OSS projects on GitHub, Wolter et al. (2023) discovered that

in approximately 50% of the projects analyzed, the top-level declared license did not

fully reflect all the licenses present within the project, emphasizing the importance

of improved education and automated tools for ensuring compliance. Moreover, Wu

et al. (2015) found instances where the license of a source code file was altered after

114

being copied, both by the original author of the code, and by the reuser; the latter

likely constitute a license violation.

The complexities of OSS licensing are further heightened by the widespread

practice of copy-based code reuse, which can lead to unintended license violations Ja-

hanshahi et al. (2024b). Managing license compliance in these scenarios is crucial for

maintaining the integrity of open source projects. Jahanshahi et al. (2024b) showed

that 80% of OSS projects have practiced copy-based reuse, including large and popular

projects. They also demonstrated that a significant portion of the reused artifacts

originate from small, lesser-known projects. Given the widespread prevalence of copy-

based reuse and the complexities of tracking the origins of artifacts, we anticipate a

high potential risk of license noncompliance in this type of reuse. This issue becomes

even more critical considering that copy-based reuse is generally overlooked both

by prior research and practitioners, thereby increasing the overall risk for the OSS

community. Towards answering RQ2, we hypothesize that:

• Hypothesis (H2a): Copy-based reuse carries a high risk of license noncom-

pliance due to compounded complexities in tracking artifact origins.

• Hypothesis (H2b): By overlooking copy-based code reuse, we are missing a

significant portion of license noncompliance issues in open source software.

6.3.4 Our Study vs Prior Work

Our work offers a comprehensive and practical approach to identifying and addressing

potential licensing issues arising from copy-based reuse in open source software, and

it distinguishes itself from prior research in several ways:

Comprehensive Identification of Licenses

Most studies, including those by Wu et al. Wu et al. (2024) and Xu et al. Xu et al.

(2023), rely heavily on explicit license declarations in metadata files. Others, like

115

Feng et al. Feng et al. (2019), use static analysis of binaries to detect embedded

license texts. However, these approaches can miss licenses that are not explicitly

declared or are located in less conventional directories. In contrast, our work analyzes

a comprehensive dataset Jahanshahi et al. (2024a) created by exhaustively scanning

the entire OSS landscape (as reflected in the World of Code Ma et al. (2019)) for files

containing the word “license” in their filepath. This includes not only standard license

files but also any file that may contain licensing information, ensuring no (obvious)

potential license data is overlooked.

Scale and Scope of Analysis

Previous studies often concentrate on specific platforms (e.g., GitHub), particular

package manager ecosystems (e.g., NPM), or a narrow range of licenses (e.g.,

OSI-approved), leading to a partial approach to license detection and analysis.

For instance, the work by Feng et al. (2019) maps binary code to source code,

detecting instances where code is directly incorporated into binary software. While

theoretically feasible, this approach encounters significant scalability challenges due to

the substantial processing power required for large-scale analysis. The computational

demands of binary-to-source mapping render it impractical for use across the entire

open-source ecosystem, especially when dealing with diverse binaries and platforms.

In contrast, our work examines the entire open-source ecosystem, offering a more

comprehensive, cross-platform perspective on licensing violations. By focusing on

scalable methods that encompass various licenses, package managers, and code reuse

practices, our approach addresses the scale limitations of prior studies, while providing

a more practical solution for detecting license violations across the open-source

landscape. Moreover, our approach is not limited to code reuse; it can identify reuse

across various types of artifacts, including documentation, configuration files, and

other non-code components. This capability offers a more comprehensive perspective

on reuse and the associated licensing challenges.

116

Controlling for Project Context

Compared to prior research, our work reflects a more nuanced analysis of the

relationship between software licensing and code reuse. Unlike earlier studies that

primarily used bivariate statistical correlations Kashima et al. (2011); Brewer (2012),

we use a more sophisticated methodology that accounts for covariates, such as project

size, community activity, and programming language. By controlling for these factors,

our work provides a clearer understanding of whether licensing type—permissive

versus restrictive—independently influences reuse probability. This allows us to re-

examine the claims made in prior studies and offers more robust insights into the

impact of licensing on OSS reuse.

Analysis of License Violations in Copy-based Reuse

While many studies have explored license conflicts, few have employed a copy-

based reuse network approach to understand the reuse patterns and potential

violations and they often focus only on dependency-based reuse networks. As shown

recently Jahanshahi et al. (2024b), copy-based reuse is prevalent and contributes

significantly to reuse practices in OSS. Our research uses the copy-based reuse network

to identify potential license violations due to license incompatibilities and reuse

patterns, providing a novel perspective on how licenses interact across repositories.

This not only reveals license conflicts but also traces their origins, facilitating targeted

resolutions and ensuring compliance across the software ecosystem.

6.4 Methodology

6.4.1 World of Code Infrastructure

World of Code (WoC) Ma et al. (2019) is an infrastructure developed to cross-reference

source code change data across the entire OSS community, enabling sampling,

measurement, and analysis both within and across software ecosystems Ma et al.

117

(2019, 2021). Essentially, WoC functions as a software analysis pipeline, handling

data discovery and retrieval, storage and updates, as well as the transformations and

augmentations required for subsequent analytical tasks Ma et al. (2021).

WoC provides various maps that link git objects and metadata (e.g., commits,

blobs, authors) to each other. It also offers more advanced maps, such as project-

to-data connections (e.g., project-to-author), author aliasing Fry et al. (2020), and

project deforking maps Mockus et al. (2020). In our study, we use WoC’s project-

to-license (P2L) map Jahanshahi et al. (2024a), which shows the licenses committed

to each project in its most recent state (Version V of WoC, updated in March 2024).

Additionally, we apply the concept of deforked projects, as introduced by Mockus

et al. (2020), to minimize potential biases caused by forks and duplicates of the same

project. Throughout this paper, the term “project” refers to these deforked projects

unless stated otherwise.

6.4.2 Copy-based Reuse Network

In the context of OSS development, analyzing code reuse is essential for understanding

the propagation of software components and the associated licensing implications.

Traditionally, the literature has primarily focused on dependency-based reuse,

where the relationships between projects are analyzed based on declared package-

manager dependencies, such as libraries or frameworks included in a project. While

dependency-based analysis provides valuable insights into how projects rely on

external components, it often overlooks the more granular aspect of direct code

copying, which can occur independently of formal dependencies. Such practices are

common in OSS projects but often remain undetected in dependency-based analyses,

as shown by Jahanshahi et al. (2024b). By mapping these direct copies, a copy-based

reuse network provides a comprehensive view of code propagation, highlighting the

actual flow of code between projects.

118

In the realm of license compliance, dependency-based analysis often focuses on

the licenses of declared dependencies. However, license obligations are not limited

to these formal dependencies. Copy-based reuse, particularly when undetected, can

lead to unintentional license violations. By mapping direct code copying, a copy-

based reuse network allows for the identification of potential licensing conflicts that

may arise from incorporating code with incompatible license terms, when the code

wasn’t part of a declared dependency.

To track this kind of reuse, WoC offers the Ptb2Pt map, which lists reused blobs

(i.e., file versions) along with the creator, reuser, and the time each project first

committed that blob Jahanshahi and Mockus (2024). This map is created by sorting

the timestamps of all commits creating a blob, with the project associated with the

earliest commit identified as the creator. Projects with any subsequent commits are

then identified as reusers of that blob.

Next, since we are interested in a project-level analysis and since projects may

reuse many blobs from one another, we further aggregated the data based on unique

combinations of upstream and downstream projects, counting the number of reused

blobs between these projects for each combination. The total number of unique

upstream-downstream project combinations was 1,815,996,757. Given our focus on

potential license noncompliance, we excluded all instances of code reuse where the

same entity (account) owns both the source and target projects. This further reduced

the data down to 1,788,541,220 combinations, indicating that about 1.5% of reuse

instances occurred between projects with the same owner.

Furthermore, given that the distribution of copied blob counts between projects

is heavily right-skewed, we analyze potential noncompliance within the reuse network

in two distinct modes to gain better insights. First, we consider complete reuse,

including any instance where at least one blob has been copied in our analysis.

Second, we refine the data to focus on reuse instances where at least ten blobs

have been copied between upstream and downstream projects, as a proxy for more

deliberate and substantial reuse.

119

6.4.3 Potential License Noncompliance

Noncompliance can manifest in various ways, often resulting in substantial legal

and operational risks. For example, it can occur when there are conflicts or

misunderstandings regarding the terms and conditions of these licenses. To better

understand the associated risks, we categorize the outcomes of license combinations

into three levels: No Issues, Potential Issue - Low Risk, and Potential Issue - High

Risk.

No Issues This category covers situations where combining different licenses

does not create legal or practical issues. Projects under these licenses can be

freely integrated, modified, and redistributed without concern for restrictive terms.

For instance, public domain and permissive licenses, such as the MIT or Apache

2.0 licenses, generally impose minimal restrictions. These licenses are designed

to encourage widespread use and modification, making them highly compatible

with other licenses. Their permissive nature ensures that they do not impose

additional restrictions on combined works, allowing for seamless integration with

other projects Laurent (2004); Rosen (2005).

Potential Issue - Low Risk These combinations produce minor or manageable

incompatibilities, such as attribution, notice preservation, or compliance with specific

conditions. For example, weak copyleft licenses, such as the LGPL, allow linking with

proprietary software, provided that modifications to the LGPL-covered code remain

open-source. This flexibility reduces the likelihood of significant legal issues when

combined with other licenses. Similarly, licenses such as the Mozilla Public License

(MPL) require modified files to be distributed under the same license but allow linking

with other code, thus posing only minor issues Fitzgerald (2006).

Potential Issue - High Risk These combinations can create substantial legal or

practical obstacles. These issues typically arise from strict copyleft provisions or other

120

Table 6.1: License Reuse Matrix and Potential Noncompliance Scenarios

To
Permissive Copyleft

Weak Conditional Public No
From Copyleft Open Domain License

Permissive No No No No No Low
Copyleft High No High High High High
Weak Copyleft Low No No Low Low High
Conditional Low High High High Low High
Public Domain No No No No No No
No License High High High High High High

incompatible conditions that limit the redistribution, modification, or integration

of the software. For instance, strong copyleft licenses, such as the GPL, require

that any derivative works be licensed under the same terms. This requirement can

conflict with other licenses, especially those that are more permissive or do not

allow for relicensing under the GPL’s terms. Such incompatibilities can prevent the

distribution of combined works, necessitating careful consideration and potentially

complex legal negotiations Stallman (2002); Moglen (2001).

The matrix in Table 6.1 outlines various reuse scenarios and the corresponding

risks of license noncompliance.

We use this rationale in RQ2 to identify and categorize potential license

noncompliance in our copy-based reuse network. We use projects’ latest status

licenses for this examination. Since both upstream and downstream projects may

have multiple licenses, we evaluate all combinations of possible noncompliance to

test hypothesis H2a. However, there is an aggregation design decision here: how to

aggregate possible noncompliance combinations of licenses with different risk levels

for the same pair of upstream–downstream projects? We consider two options. For

a high sensitivity approach, we select the highest risk level combination of licenses

for a given pair of upstream–downstream projects. Conversely, for a low sensitivity

approach, we select the lowest risk level combination.

121

ComplianceA,B =

max
(
risk(LAi

, LBj
)
)
: High Sen.

min
(
risk(LAi

, LBj
)
)
: Low Sen.

where:

• LAi
: Each license of Project A,

• LBj
: Each license of Project B,

• risk(LAi
, LBj

): Incompatibility risk level between license LAi
and license LBj

.

For brevity, we present and discuss only the low-sensitivity results below, but

include the high-sensitivity results in our replication package, for completeness.

6.4.4 Copy-based vs. Dependency-based Reuse

To test our hypothesis H2b, we compare the reuse instances captured via copy-

based network with dependency-based network. For this analysis, we focus on

high-risk categories in low-sensitivity mode with 10 or more reused blobs—our least

conservative scenario—to quantify how often noncompliance is detectable through

conventional methods (package manager analysis) versus cases that require copy-

based detection. To keep the analysis tractable we selected a sample of 50,000

unique upstream-downstream project pairs from our dataset. Using a stratified

sampling, we proportionally selected from each of the 16 high-risk categories, which

together represent a total of 82 million projects. To ensure adequate representation

of smaller categories, a minimum sample size of 1,000 was enforced, even when

the proportional size was smaller. This approach ensures sufficient representation

from smaller categories while maintaining overall proportionality. Our final sample

included a total of 57,341 project combinations.

Next, we used the maps provided in WoC, which detail all import and export

statements in every blob for each commit. By analyzing these maps, we identified

122

all import/export statements within the projects in our sample1. We then matched

these statements between upstream and downstream projects to determine if they

share any declared dependencies (i.e., the downstream project imports a package

that the upstream project exports).

6.4.5 Regression Model

In RQ1, we investigate whether the upstream project’s license type affects the

likelihood of its artifacts getting reused, testing hypotheses H1a and H1b. Since

the response variable is binary (1 if the project has introduced at least one reused

blob, 0 otherwise), a logistic regression model is used. It is the standard approach

for binary outcomes and enables us to estimate the probability of reuse from various

predictors Agresti (2012).

Stratified Sampling

Given the scale and diversity of OSS projects, we employed a stratified sampling

approach to ensure that our regression model accurately represents the OSS land-

scape Thompson (2012). Projects were divided into strata based on six key variables:

number of commits, blobs, authors, forks, active months, and earliest commit time.

These variables reflect project size, activity, and history, all of which are likely to

influence our outcome variables, as discussed in Sec. 6.3 above. The strata were

defined as follows: number of commits (fewer than 500, 500–2000, and more than

2000), number of blobs (fewer than 10,000 and more than 10,000), number of authors

(one author, 2–10 authors, and more than 10 authors), number of forks (no forks

and at least one fork), and active months (fewer than three months and more than

three months). Additionally, we categorized projects into four historical eras based

on their earliest commit time: the Foundational Era (before 1998), the Dot-com

Boom and OSS Expansion (1998–2010), the Maturation and Mainstream Adoption

1Analyzed languages: Java, JavaScript, Python, R, Rust, Scala, C#, Go, Groovy, Kotlin, and
Perl.

123

phase (2010–2018), and the Modern Era with a Community Focus (2019–present).

This stratification resulted in 288 unique bins. We sampled projects from each bin,

yielding a final dataset of approximately half a million projects. While some bins

contained fewer projects than anticipated due to uneven distribution, this approach

ensures that our sample is representative of the broader OSS ecosystem, allowing for

robust and generalizable conclusions from our analyses.

Predictors

Checking for correlations among predictors is crucial in regression models, as

multicollinearity—strong correlations between predictors—can distort the results and

reduce reliability Dormann et al. (2013). To manage multicollinearity, we applied

a 0.6 correlation threshold. Variables with correlations exceeding this threshold

indicate overlapping information, and removing them helps mitigate multicollinearity

while retaining the most important predictors and their portion of explained

variance Vatcheva et al. (2016). The descriptive statistics for the remaining variables

are provided in Table 6.2.

Table 6.2: Regression Model - Descriptive Statistics

Variable Description Statistics

Reuse Introduced at least 1 reused blob Yes: 444,144 (77.62%) No: 128,029 (22.38%)

5% Median Mean 95%
EarliestCommit Time since the earliest commit 05/08/2006 07/05/2017 01/31/2016 11/23/2021
LatestCommit Time since the latest commit 04/30/2011 02/17/2020 03/15/2019 04/28/2023
CoreAuthors Authors with 80%+ of commits 1 2 8.62 17
Forks Number of forks 0 0 27.66 48
Commits Number of commits 2 155 2,982.63 5,770
Files Number of files 5 1,820 17,295.57 59,939.60
AdoptDelay Earliest commit to license adoption (days) 0 0 133 751
Burstiness (Latest - Earliest) / Active months 0 1 1.87 6.37

. .
Language JavaScript C/C++ Python Java PHP Ruby (Remaining)
Counts (%) 221,588 (38.72%) 82,551 (14.43%) 53,468 (9.34%) 50,372 (8.80%) 44,952 (7.86%) 18,592 (3.25%) 100,650 (17.59%)

. .
License No License Permissive Copyleft Weak Copyleft Conditional Open Public Domain
Counts (%) 263,974 (46.13%) 148,320 (25.92%) 60,925 (10.65%) 43,143 (7.54%) 30,933 (5.41%) 24,878 (4.35%)

While we removed highly correlated numerical variables to avoid multicollinearity,

this approach cannot be directly applied to categorical variables. Therefore, we

included interaction terms between two categorical variables—license type and

124

programming language—in our model to better capture the combined effect of these

factors on reuse probability. This approach allows us to account for potential

interactions between these variables, offering a more nuanced understanding of how

different license types may influence reuse within the context of specific programming

languages.

Additionally, we applied sum contrasts for these two predictors, also known as

effect coding, where each level of the predictor is compared to the overall mean of all

levels. This method allows for a more balanced interpretation of coefficient estimates,

by contrasting each category with the overall mean rather than a specific reference

category. In sum contrasts, the coefficients for all levels, including the intercept,

sum to zero, ensuring that one level’s coefficient is determined by the others, thereby

maintaining balance and enhancing interpretability in the model.

6.5 Results and Discussion

6.5.1 RQ1 - Regression Model

Our Findings

To establish a baseline, we first modeled the probability of reuse based solely on

the project’s license type, without considering other potential factors. This initial

model showed a significant relationship between license type and reuse likelihood.

Specifically, projects with permissive, copyleft, or weak copyleft licenses were more

likely to have their artifacts reused, while those with public domain licenses were less

likely to be reused.

To assess the impact of the variables with significant coefficients, we examine the

odds ratios derived from the logistic regression coefficients. An odds ratio greater

than 1 signifies a positive impact, whereas an odds ratio less than 1 indicates a

negative impact. Figure 6.1 presents the odds ratios along with their corresponding

95% confidence intervals.

125

Figure 6.1: Simple Model - Odds Ratios and 95% Confidence Intervals.

Based on these findings, hypothesis H1a is partially supported. Projects with

permissive licenses, such as MIT and BSD, have higher reuse rates; however, those

with public domain licenses do not follow this pattern. Similarly, hypothesis H1b

receives partial support: while restrictive licenses generally exhibit a lower probability

of reuse compared to permissive licenses, they unexpectedly show higher odds of reuse

than public domain licenses.

Recall, this initial model does not account for other potential factors that may

influence reuse. Consequently, while the preliminary results provide valuable insights,

they may be confounded by unconsidered variables. To address this limitation, we

introduce a second model incorporating additional control variables, which allows for

a more precise analysis of the true impact of license type on artifact reuse.

Table 6.3 presents the ANOVA results for this model, showing that all predictors

have highly statistically significant coefficients (p-values close to zero; not surprising

given our sample size), and allowing for a comparison of relative explanatory power

of each variable (the Deviance column). Almost all control variables had the

hypothesized effects, except for burstiness, which seems to be encouraging reuse;

however, its deviance is relatively low. The regression coefficient estimates are also

shown in this table for non-categorical variables2. Note, while a categorical variable

may be significant in the model based on ANOVA results, indicating it contributes

meaningfully, the coefficients for some individual levels of the variable can still be

2The p.value (Pr(> |z|)) for all this variables are close to zero (< 2.2e−16).

126

Table 6.3: ANOVA Table and Regression Coefficients

Df Deviance Pr(>Chi) Coefficient

EarliestCommit 1 5,396 < 2.2e−16 5.60e−01

LatestCommit 1 30,987 < 2.2e−16 −1.49e−01

CoreAuthors 1 8,143 < 2.2e−16 2.56e−01

Forks 1 7,994 < 2.2e−16 4.05e−01

Commits 1 23,749 < 2.2e−16 2.57e−01

Files 1 65,912 < 2.2e−16 2.80e−01

AdoptionDelay 1 662 5.75e−146 2.05e−02

Burstiness 1 128 1.42e−29 6.68e−02

Language 11 7,710 < 2.2e−16 Cat.
License 5 874 1.20e−186 Cat.
Language:License 55 1,799 < 2.2e−16 Cat.

insignificant. This suggests that, although the variable as a whole impacts the

outcome, not every category within it shows a statistically significant effect.

Similarly to the previous model, Figure 6.2 displays the odds ratios and their

corresponding 95% confidence intervals for the significant license variables. When

additional control variables such as programming language and its interaction with

license types are introduced into the model, the results reveal a more nuanced

understanding of how these license types influence software reuse. Significant

results are observed only in specific combinations of license types and programming

languages.

For permissive licenses, Python, C/C++, and JavaScript projects exhibit an

odds ratio greater than 1, indicating an increase in reuse. The positive impact of

permissive licenses is significant only for these three programming languages, while

other languages do not show statistically significant effects.

The first model suggested that public domain licenses are negatively associated

with reuse, and the second model confirms that this effect is significant only for

JavaScript and Ruby, with no notable impact in other languages. This finding

implies that public domain licenses may lack the legal incentives or protections that

127

Figure 6.2: Full Model - Odds Ratios and 95% Confidence Intervals.

developers value, making them less attractive for promoting reuse in certain contexts.

Hypothesis H1a is therefore partially supported.

Projects using permissive licenses show increased reuse in Python, C/C++, and

JavaScript, but this effect is not significant in other languages, suggesting that

permissive licenses enhance reuse only in specific environments. Furthermore, public

domain licenses do not generally impact reuse odds, but reduce the likelihood of reuse

in JavaScript and Ruby, contrary to the expectation that more permissive licenses

encourage reuse, and thus in contrast to H1a.

Several factors may contribute to this unexpected result. One possibility is

legal uncertainty; the concept of dedicating works to the public domain is not

consistently recognized across jurisdictions. In some countries, authors cannot fully

waive their copyright, leading to ambiguities that might deter developers from reusing

public domain code. Additionally, the absence of explicit permissions can create

confusion. Although public domain status implies freedom of use, developers and

organizations may prefer licenses that clearly state permissions and limitations, such

128

RQ1 Key Findings

1. Permissive licenses have the strongest positive impact on reuse, particularly in
Python, C/C++, and JavaScript projects. (H1a)

2. Public domain licenses show a negative association with reuse, specifically in
Ruby and JavaScript projects. (H1a)

3. Copyleft licenses show mixed results: they are beneficial for reuse in specific
contexts, such as JavaScript, but generally have a negative effect on reuse when
controlling for other factors. (H1b)

4. Weak copyleft licenses reduce reuse only in Rust, C/C++, and Java projects
when other factors are considered. (H1b)

5. The influence of license type on reuse is highly dependent on programming
language, indicating that license effectiveness varies significantly across
different language ecosystems.

as the MIT or BSD licenses, which provide explicit legal reassurances. The perceived

lack of explicit disclaimers or warranties in public domain software might also

make it appear riskier, particularly for commercial use. By contrast, permissive

licenses typically include clauses limiting liability and disclaiming warranties, thereby

offering additional protections. Community trust and familiarity may also

play a significant role. Established permissive licenses are widely recognized and

trusted, whereas public domain licenses may not enjoy the same level of familiarity

or acceptance, leading developers to favor more well-known licensing options.

For copyleft licenses, the overall effect is negative. However, JavaScript projects

under such licenses exhibit an odds ratio greater than 1, suggesting that the effect

of copyleft licenses varies significantly depending on the language. Weak copyleft

licenses also show negative impacts on reuse for JavaScript, Java, C/C++, and Rust

projects. These findings suggest that hypothesis H1b is also partially supported.

Although copyleft licenses generally reduce the probability of reuse, this is not the

case for all programming languages. Moreover, weak copyleft licenses reduce reuse

only in specific languages.

129

Implications

A key takeaway is that the choice of license for a project has a substantial impact on

the likelihood of its artifacts being reused. This effect varies across different license

types and programming languages, highlighting nuanced relationships between license

choice, programming language, and reuse behavior. This indicates that developers

and contributors should be mindful of how their choice of license can influence the

adoption and reach of their work.

One of the most unexpected findings is that public domain licenses, designed to

allow free and unrestricted reuse, have a negative effect on reuse. This is concerning

because the intent behind these licenses is to eliminate barriers, yet the data suggest

the opposite. The negative association of public domain licenses with reuse indicates

that the OSS community may need to address this unintended outcome. One way for-

ward is to enhance awareness and education about public domain licensing, clarifying

the legal protections and reuse rights it offers. Clearer guidance on how public domain

licenses differ from other open source licenses, particularly regarding legal clarity and

potential liability, could benefit OSS contributors, especially newcomers. The commu-

nity might also consider providing stronger legal frameworks or support around public

domain licenses to reduce uncertainties and hesitations. Project maintainers may also

reconsider using public domain licenses if their primary goal is to maximize reuse. The

data suggest that permissive licenses may be more effective in promoting reuse.

In conclusion, while the OSS movement encourages reuse and collaboration, these

results show that the choice of license plays a crucial role in determining whether a

project achieves those goals. The community must be attentive to the barriers that

certain licenses, such as public domain, may unintentionally create and take steps to

provide better education, support, and legal frameworks to ensure that the intentions

behind these licenses are effectively realized in practice.

130

6.5.2 RQ2 - Noncompliance

Our Findings

As discussed above, we report only the results of our low-sensitivity aggregation here

(i.e., considering the lowest-risk pairs of licenses for a given upstream–downstream

pair of projects). Figures 6.3 and 6.4 summarize our findings for the two flavors of

reuse we consider (complete reuse, with at least one shared blob, and substantial

reuse, with 10 or more blobs).

At least 1 Reused blob Figure 6.3 highlights the top 10 categories of license

combinations between upstream and downstream projects, showcasing the most

frequent pairings. The pie chart illustrates the distribution of project tuples across

three categories: no issues, high-risk potential, and low-risk potential for license

noncompliance.

The results indicate that a significant majority (55%) of upstream-downstream

license combinations fall into the high-risk category. The most common high-risk

scenario occurs when neither the upstream nor downstream projects have a license,

accounting for 605 million project tuples. This creates legal uncertainty regarding

reuse, modification, and distribution rights. Other high-risk combinations within the

top 10 involve cases where one project lacks a license, such as no-license to permissive.

Even when the upstream project has a clear license, the absence of a downstream

license introduces ambiguity and potential legal challenges.

On the positive side, 30% of the tuples present no issues, such as permissive to

permissive combinations, where both upstream and downstream projects are clearly

licensed, minimizing legal risk. Low-risk combinations make up 14%, including cases

like permissive to no-license, which involves some legal uncertainty but is less risky

than high-risk scenarios.

131

Figure 6.3: Top 10 License Types - 1 Reused Blob, Low Sensitivity

At least 10 Reused blobs The total number of reuse instances (unique combina-

tions of upstream and downstream projects) drops significantly from 1.816 billion to

212 million after applying the constraint of at least 10 reused blobs—a reduction of

approximately 88%. This sharp decline indicates that the majority of earlier reuse

cases involved fewer than 10 blobs, suggesting that much of the initial reuse was

minimal or partial. This reduction highlights that a significant portion of copy-

based reuse in the open source ecosystem is small-scale or potentially superficial,

involving limited sharing between projects, with fewer instances of deeper, substantial

dependencies. By focusing on reuse instances involving at least 10 reused blobs, the

data now captures more meaningful relationships, wherein downstream projects are

more closely integrated with upstream codebases.

Although the number of high-risk combinations decreases proportionally from

the earlier results, they still account for 39% of the remaining reuse instances (see

Figure 6.4). This indicates that even in cases of more substantial reuse, issues related

to licensing or lack of clear licensing persist. However, the increase in the no-issues

category to 48%, primarily driven by permissive to permissive license reuse, suggests

that when significant reuse occurs, clearer licensing tends to be in place, especially

for permissive licenses.

132

Figure 6.4: Top 10 License Types - 10 Reused Blobs, Low Sensitivity

Overall, these findings support our hypothesis H2a and underscore the critical

importance of proper licensing.

Copy-based vs. Dependency-based Reuse The results of comparing reuse

detected via copy-based network and dependency-based network are presented in

Table 6.4.

The results highlight a significant limitation in current dependency detection tools,

showing that the percentage of code reuse detected through declared dependencies

is remarkably low across all categories. Despite analyzing over 57,000 project

combinations, the overall detection rate of code reuse through formal dependency

relationships was only 2.43%. This suggests that traditional methods relying on

package managers, which track declared imports and exports between projects, are

insufficient for capturing most instances of code reuse, supporting our hypothesis

H2b.

Implications

These findings have significant implications for the open-source community, particu-

larly in relation to license compliance and code reuse detection. The results reveal that

133

Table 6.4: Reuse Detectable by Dependency Relationship

License Type Sample Size Decl. Dep. Percent

no-license-2-no-license 21,102 499 2.36%
no-license-2-permissive 13,670 346 2.53%
no-license-2-weak-copyleft 6,357 94 1.48%
no-license-2-public-domain 4,107 93 2.26%
copyleft-2-no-license 1,105 48 3.35%
conditional-open-2-conditional-open 1,000 20 2.00%
conditional-open-2-copyleft 1,000 20 2.00%
conditional-open-2-no-license 1,000 40 4.00%
conditional-open-2-weak-copyleft 1,000 18 1.80%
copyleft-2-conditional-open 1,000 19 1.90%
copyleft-2-permissive 1,000 36 3.60%
copyleft-2-public-domain 1,000 36 3.60%
copyleft-2-weak-copyleft 1,000 14 1.40%
no-license-2-conditional-open 1,000 34 3.40%
no-license-2-copyleft 1,000 43 4.30%
weak-copyleft-2-no-license 1,000 36 3.60%

Total 57,341 1,396 2.43%

a majority of upstream-downstream project combinations are classified as high-risk

for potential noncompliance, underscoring a persistent issue in open-source software

development. The high occurrence of high-risk cases, especially in projects with no

license, highlights a potential legal vulnerability that could impact the sustainability

and collaboration within the open-source ecosystem.

This findings also call for more advanced detection techniques that go beyond

traditional dependency analysis. Tools that can detect code reuse through copying

are essential for identifying non-compliance with licensing terms. The low detection

rates across the board demonstrate that current tools are not capable of providing

a complete picture of how code is reused, and more comprehensive approaches are

necessary to ensure effective license compliance monitoring.

134

RQ2 Key Findings

1. A significant portion of upstream-downstream project combinations are
classified as high-risk for potential license noncompliance, leading to
considerable legal uncertainties regarding reuse, modification, and distribution
rights. (H2a)

2. The most common high-risk potential noncompliance scenario involves projects
lacking any license, underscoring a legal vulnerability within the open-source
community and highlighting the urgent need for consistent and clear licensing
practices.

3. Dependency tracking is inadequate for detecting most instances of code
reuse, highlighting the need for more granular detection methods capable
of identifying copy-based reuse that would enable more accurate license
compliance monitoring in open-source projects. (H2b)

6.6 Limitations

6.6.1 Internal Validity

Project to License Map

The project to license map (P2L) in WoC relies on detecting license files in

repositories, assuming licenses are always recorded in dedicated files.Nevertheless,

licenses might appear in README or source files, leading to underreporting or

misclassification. This suggests that results should be interpreted cautiously, and

additional manual verification may be needed for a more accurate understanding of

license noncompliance.

License Scope

Assigning a license to an entire OSS project can introduce challenges, as the license

may not uniformly apply to all components. Projects often incorporate third-party

libraries, modules, or contributions that come with their own distinct licenses, which

may conflict with or restrict the applicability of the main project license. Thus, while

135

the project may be licensed under a specific open-source framework, that license may

only cover certain parts, with other components subject to different licensing terms.

Dependency-Based Reuse

One limitation in comparing copy-based reuse with dependency-based reuse is that

some projects use dynamic or implicit imports, where dependencies are loaded

at runtime or through unconventional methods that may not be captured by a

straightforward export-import analysis. This can result in certain dependencies,

which package managers can detect, being overlooked, exposing gaps in our approach.

Nonetheless, our methodology is conservative, as we track dependencies over time

rather than focusing solely on the latest version. By excluding any reuse instance that

was detectable through dependencies at any point in the project’s history, we provide

a more thorough view of potential dependency-based reuse. This approach reduces

the risk of missing past dependencies that may have been removed or modified in

subsequent versions, delivering a more inclusive analysis of reuse instances. However,

this conservatism may also lead to attributing reuse to dependencies that no longer

exist, slightly skewing the results toward historical dependency detection.

6.6.2 External Validity

Copy-Based Reuse

While emphasizing copy-based reuse offers valuable insights into license compliance,

we recognize the significant role of dependency-based reuse within the broader reuse

network. Focusing solely on copy-based reuse may overlook certain aspects of how

dependencies are integrated into a project. Conversely, dependency-based reuse can

miss critical instances where code is directly copied between projects, which is equally

crucial in identifying potential noncompliance. Thus, while this work prioritizes copy-

based reuse, it serves to complement—rather than replace—the understanding gained

136

from analyzing dependency-based reuse, together providing a more comprehensive

view of compliance.

6.7 Conclusions

Our study shows that the choice of open-source license plays a significant role in

influencing the likelihood of reuse. Permissive licenses consistently encourage reuse

across a variety of programming languages, while copyleft and weak copyleft licenses

exhibit more context-specific effects, sometimes limiting reuse depending on the

language and environment. Despite offering unrestricted reuse, public domain licenses

were linked to a negative impact on reuse, likely due to legal uncertainties. Our

findings also emphasize the importance of detecting copy-based reuse, as traditional

dependency-based approaches often fail to capture the full scope of reuse, especially

when explicit dependencies are not declared. This highlights the need for more

advanced detection methods to improve license compliance monitoring in the open-

source ecosystem. Moreover, projects without clear licenses continue to present

significant legal risks, underscoring the need for more consistent and transparent

licensing practices within the open-source community.

137

Chapter 7

Hidden Vulnerabilities and

Licensing Risks in LLM

Pre-Training Datasets

Disclosure Statement

A version of this chapter is accepted to be published as Jahanshahi and Mockus

(2025):

Mahmoud Jahanshahi and Audris Mockus. 2025. Cracks in The Stack:

Hidden Vulnerabilities and Licensing Risks in LLM Pre-Training Datasets.

In Proceedings of the second International Workshop on Large Language Models for

Code. (LLM4Code ’25). Just Accepted (January 2025).

This material is included in accordance with ACM’s policies on thesis and

dissertation reuse. © 2025 Copyright held by the owner/author(s). Publication

rights licensed to ACM.

Replication package available at: https://zenodo.org/records/14175945

138

https://zenodo.org/records/14175945

7.1 Abstract

A critical part of creating code suggestion systems is the pre-training of Large

Language Models (LLMs) on vast amounts of source code and natural language

text, often of questionable origin, quality, or compliance. This may contribute to

the presence of bugs and vulnerabilities in code generated by LLMs. While efforts to

identify bugs at or after code generation exist, it is preferable to pre-train or fine-tune

LLMs on curated, high-quality, and compliant datasets. The need for vast amounts

of training data necessitates that such curation be automated, minimizing human

intervention.

We propose an automated source code autocuration technique that leverages

the complete version history of open-source software (OSS) projects to improve the

quality of training data. The proposed approach leverages the version history of all

OSS projects to: (1) identify training data samples that have ever been modified,

(2) detect samples that have undergone changes in at least one OSS project, and

(3) pinpoint a subset of samples that include fixes for bugs or vulnerabilities. We

evaluate this method using “The Stack” v2 dataset, comprising almost 600M code

samples, and find that 17% of the code versions in the dataset have newer versions,

with 17% of those representing bug fixes, including 2.36% addressing known CVEs.

The clean, deduplicated version of Stack v2 still includes blobs vulnerable to 6,947

known CVEs. Furthermore, 58% of the blobs in the dataset were never modified

after creation, suggesting they likely represent software with minimal or no use.

Misidentified blob origins present an additional challenge, as they lead to the inclusion

of non-permissively licensed code, raising serious compliance concerns.

By deploying these fixes and addressing compliance issues, the training of new

models can avoid perpetuating buggy code patterns or license violations. We expect

our results to inspire process improvements for automated data curation, a critical

component of AI engineering, with the potential to significantly enhance the quality

and reliability of outputs generated by AI tools.

139

7.2 Introduction

Large Language Models (LLMs) are already employed by popular tools such as

GitHub Copilot and have a significant impact on how people interact with computing

resources. LLM code-generation tools appear to increase productivity Ziegler et al.

(2022), are easy to access with little or no cost on popular coding platforms, and

generated code is rapidly spreading (“GitHub Copilot is behind an average of 46%

of a developer’s code” Zhao (2023)). Quality control of this code, however, is

severely lacking in the LLM-based Software Supply Chain (SSC). LLMs are trained

on vast amounts of source code and natural language text that are of questionable

origin and quality. The output generated by LLMs, therefore, often contains bugs,

vulnerabilities, or license violations that are copied or reused to train other LLM

models, thus propagating the problem. Hubinger et al. (2024) showed that LLMs

can introduce vulnerabilities and this behavior is extremely difficult to change via

fine-tuning. It is reasonable to assume that at least part of that buggy output may

be attributed to the buggy files used to train LLMs. While existing approaches

use AI to detect the most common insecure coding patterns Zhao (2023), but many

vulnerabilities do not fit such simple patterns. It is widely accepted that the size

and quality of training corpus are essential for good performance of the models, yet

common curation techniques, such as number of stars or forks, appear ineffective Allal

et al. (2023). Independent of the intended coding tasks, a large body of training data

is necessary for LLMs to be effective. As poor quality training data can reduce the

quality of LLM-based tools, improving the state of art in source code training data

curation is an important task that would impact all downstream efforts. It is worth

noting that source code is often included in training data for natural language models

as well. For example, the natural language collection in Laurençon et al. (2022) has

hundreds of gigabytes of source code and collection described in Gao et al. (2020)

nearly 100GB.

140

Previous work found instances of vulnerable or license-violating code in open

source training datasets. This shows that by taking information from version control

systems, it is feasible to identify vulnerable, buggy, or license-violating code and

replace it with fixed versions Reid et al. (2022); Reid and Mockus (2023).

In summary, it is essential to exclude problematic code from LLM training

datasets, or, at least, to flag it as high risk.

The goals of this work is to investigate the quality of the source codes that are used

to train LLMs and to develop automated approaches to improve it. Specifically, we

propose a simple and effective way to identify (and fix) several types of problematic

source code that is used to train LLMs.

In a nutshell, we leverage the fact that a file’s content may undergo numerous

changes over its lifetime, with some of these changes being bug fixes. By identifying

cases where a file in the training data has been modified and updated, we can

recommend these newer versions as replacements for older versions in the training

dataset. In order for this approach to work, we have to go across repository boundaries

and consider versions (and their history) in all public repositories, i.e., Universal

Version History (UVH) Reid and Mockus (2023). World of Code (WoC) research

infrastructure Ma et al. (2019, 2021) provides capabilities to accomplish such an

arduous task as described in Section 7.4.

Our primary contributions are: 1) an approach to identify potentially vulnerable,

buggy, or not heavily used source code in public LLM training datasets; 2) an

approach to identify potential license violations in these datasets; and 3) evaluation

of the approach on the largest public curated code LLM training dataset the Stack

v2 Lozhkov et al. (2024). We also articulate how code LLM’s represent a novel type

of software supply chains and suggest that never-modified code may indicate its low

use and untested quality and that should be taken into account when constructing

training datasets.

In the remainder of the paper Section 7.3 discusses curated training datasets used

for evaluation, relevant key concepts of software supply chains, how LLM-generated

141

coder represents a novel type of software supply chain, and key features of WoC used

in this study. Section 7.4 describes our approach in detail. Section 7.5 presents and

discusses our findings.

7.3 Background

7.3.1 Types of Software Source Code Supply Chains

Software supply chain concept is helpful for assessing risks, as in traditional supply

chains. However, software supply chains have substantially different nature from

traditional supply chains. In particular, three types of software source code1 supply

chains have been previously identified Mockus (2019b). The most common, or Type

I SSC is represented by code (runtime) dependencies. For example, an import

statement in Java or include statement in C programming languages. The two

primary risks for downstream projects in this scenario are: insufficient upstream

maintenance, where bugs and vulnerabilities remain unresolved, and overly aggressive

maintenance, where upstream changes disrupt downstream code Xavier et al. (2017).

Type II SSC involves copied code, a common practice in open-source software

where code is shared publicly Jahanshahi et al. (2024b), allowing anyone to copy or

fork it (within licensing requirements). While breaking changes are no longer a risk in

Type II SSC, the absence of upstream maintenance becomes inevitable, as the code

is now maintained within the destination project.

Type III SSC involves knowledge transfer where developers learn procedures

techniques and tools by working in one project and then apply some of what they

learned elsewhere. While learning, in general, is a good thing, some quality practices

or API usage may introduce bugs or vulnerabilities that, if adopted by developers,

are then spread by these developers to other projects.

1We explicitly exclude various ways binary software is delivered as, for example in Solar Winds
hack.

142

The current state of the industry in source code SSCs is to capture dependencies

based on package managers (Type I SSCs) and to rely on the “official” directories

such as NVD and package managers to identify the security and licensing attributes.

As was shown in Reid et al. (2022); Reid and Mockus (2023), rampant code copying

enabled and encouraged by OSS results in massive orphan vulnerabilities and licensing

violations that cannot be detected by existing approaches.

7.3.2 The Promise and Challenges of Large Code Datasets

Large-scale code datasets are invaluable for advancing AI-driven code solutions, such

as automated code generation, bug detection, and refactoring. These datasets provide

extensive repositories of programming languages, styles, and structures, enabling

large language models (LLMs) to learn complex coding patterns and generalize

across diverse coding tasks. By leveraging such data, AI models significantly

improve in generating, completing, and correcting code, which supports developers

in accelerating the software development cycle and reducing costs Allamanis et al.

(2018); Lozhkov et al. (2024).

However, maintaining the quality and integrity of these large datasets poses several

challenges, often underexplored in research. Duplication, for instance, can lead to

redundancy, creating biases and reducing model diversity. Version control is another

critical challenge, as datasets sourced from dynamic platforms like GitHub may

frequently change; without careful version tracking, models risk learning outdated or

deprecated practices. Provenance tracking is essential for maintaining the contextual

relevance and reliability of data, allowing users to trace the origins and evolution

of code snippets. Additionally, licensing complexities arise, as open-source code

often comes with a range of permissive and restrictive licenses. Properly handling

these licensing issues is crucial to ensuring lawful usage, especially in commercial

settings Gunasekar et al. (2023).

143

LLMs introduce a novel type (Type IV) of Software Supply Chains that manifest

by relationships between the LLM-generated code and the code used to train the

LLM models. LLMSSCs, similar to Type II SSCs, are conceptually copying the code

(including its bugs) in the training data but in a way that obfuscates the origin. The

full scope of risks posed by Type II copy-based SSCs has yet to be studied in depth.

7.3.3 The Stack v2 Dataset

To evaluate our approach we use a large open source dataset intentionally curated for

training code LLMs: the Stack v2 Lozhkov et al. (2024). “The Stack v2 contains over

3B files in 600+ programming and markup languages. The dataset was created as part

of the BigCode Project , an open scientific collaboration working on the responsible

development of Large Language Models for Code (Code LLMs). The Stack serves as

a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable

the synthesis of programs from natural language descriptions as well as other from

code snippets.”

This dataset is widely adopted in AI and software development due to its extensive

multi-language coverage and permissive licensing, enabling use in both academic and

commercial contexts. The Stack (v2) fosters open collaboration, supporting model

training across diverse coding ecosystems and advancing tools for software automation

and analysis Gunasekar et al. (2023).

In addition to the full dataset, the Stack v2 has several deduplicated versions.

the-stack-v2-dedup is near-deduplicated, the-stack-v2-train-full-ids is based on the

the-stack-v2-dedup dataset but further filtered with heuristics and spanning 600+

programming languages. Finally, the-stack-v2-train-smol-ids is based on the the-

stack-v2-dedup dataset but further filtered with heuristics and spanning 17 program-

ming languages. We evaluate our fixing approach on the full and smol (maximally

deduplicated) datasets2.

2For more details on the dataset and the deduplication process, refer to the Stack v2
documentation: https://huggingface.co/datasets/bigcode/the-stack-v2

144

https://huggingface.co/datasets/bigcode/the-stack-v2

7.3.4 Motivation for This Study

Evaluating large code datasets is essential to address the intricacies of version security

and licensing, which collectively impact the reliability and ethical compliance of large

language models (LLMs) for code.

Security Vulnerabilities and Bugs

The security implications of large datasets are significant, especially in the context of

outdated or vulnerable code. If models are trained on datasets containing undetected

security flaws, these vulnerabilities may persist in model outputs, increasing the risk

of insecure code suggestions. This issue is particularly concerning for code used in

sensitive applications, where even minor security oversights can lead to substantial

risks and exploitation potential. Security-focused dataset evaluation is therefore vital

to prevent models from inadvertently embedding insecure practices into their code

outputs Pearce et al. (2022).

Given the large-scale, open-source nature of The Stack v2 dataset, it is likely to

contain instances of vulnerable and buggy code. This hypothesis (H1) is based on the

prevalence of “orphan vulnerabilities” in open-source projects, as described by Reid

et al. (2022), where vulnerabilities in copied code persist even after they are patched

in the original source. In large datasets aggregated from numerous repositories, code

reuse without consistent patching introduces security risks, as outdated or unpatched

code versions may proliferate across projects, spreading known vulnerabilities further.

• Hypothesis 1 (H1): The Stack v2 dataset is likely to contain instances of

vulnerable and buggy code.

Legal Considerations

Maintaining licensing integrity is fundamental for the lawful and ethical deployment

of code-based AI. The provenance and licensing of code samples in these datasets

must be meticulously tracked to prevent legal risks associated with licensing

145

misrepresentation or inaccurate attributions. Open-source projects often involve

significant code reuse, which can lead to fragmented metadata or altered licensing

information as code is copied across projects. Proper licensing ensures that the

models’ outputs respect open-source constraints, which is crucial for both research and

commercial applications. Without rigorous checks, models might generate code based

on improperly licensed data, exposing end-users to compliance issues and potential

litigation. Ensuring that datasets uphold licensing integrity not only fosters ethical AI

but also protects users from unforeseen legal complications Gunasekar et al. (2023).

Due to the prevalence of “copy-based reuse” in open-source development, as

explored by Jahanshahi et al. (2024b), we hypothesize (H2) that The Stack v2 dataset

contains instances of misidentified code origins. While the dataset has metadata

identifying the project from where each source code file was obtained, that file may

have been copied from another project that has a different or even incompatible

license. This form of reuse, where source code is directly copied into new projects,

often results in fragments with altered or lost metadata, which complicates the ability

to accurately trace their provenance. This lack of provenance tracking can lead to legal

and ethical issues in AI applications for code. Without accurate metadata, models

may inadvertently generate code with improper licensing, exposing users to potential

compliance issues. Misidentification of code origins in datasets like The Stack v2 is

particularly risky for industry applications, as it challenges the trustworthiness and

lawful deployment of LLM4Code models in commercial environments.

• Hypothesis 2 (H2): The Stack v2 dataset is likely to contain instances of

misidentified code origins that are prone to license violation.

7.3.5 Contributions

The primary contributions of this paper focus on addressing data quality and

compliance concerns within The Stack v2 dataset. The paper aims to enhance the

146

understanding and reliability of large code datasets by providing the following key

contributions.

Assessment of Security and Reliability

We introduce a novel methodology for identifying source code that may be potentially

vulnerable, contain bugs, or exhibit minimal usage in real-world applications. Our

approach uniquely incorporates version control history to track and analyze the

evolution of source code, focusing on identifying newer versions of files that indicate

updates, bug fixes, or refinements over time. By examining commit histories

and versioning patterns, we can detect files that have undergone improvements or

corrections, flagging older versions as potentially vulnerable or buggy. This historical

perspective provides insight into code stability and usage trends, allowing us to

differentiate actively maintained, reliable code from outdated, less robust sections.

Analysis of Code Provenance and Licensing Accuracy

We conduct a detailed examination of code provenance to evaluate licensing accuracy

and the origins of code snippets within the dataset. By tracking the source and

licensing status of code entries, we provide a comprehensive assessment of compliance

with open-source licensing requirements. This contribution is particularly important

for models deployed in industry, where legal and ethical use of data must be assured.

Evaluation on Large-Scale Code Dataset

To validate the effectiveness of our approach, we perform a comprehensive evaluation

on the largest publicly curated code LLM training dataset, Stack v2. This dataset

serves as an ideal benchmark due to its scale and diversity. By applying our

methodology to Stack v2, we can assess the robustness of our techniques in

identifying potentially vulnerable or outdated code segments, accurately tracking

version histories, and verifying licensing compliance across a large and varied dataset.

147

This evaluation establishes the applicability and scalability of our contributions to

real-world, large-scale code datasets, reinforcing the value of our work in supporting

the development of secure, high-integrity LLM training corpora.

7.4 Methodology

To address big data-related aspects of the proposed work, we leverage WoC research

infrastructure Ma et al. (2019, 2021) for open source version control data. This

data includes a vast majority of public open source projects and provides access

to petabytes of data that includes versions of source code, information on time,

authorship, and exact changes made to the source code over the entire activity history

of most participants in OSS.

7.4.1 Key Concepts

The proposed method for identifying issues in training data leverages unique

capabilities of WoC. In particular, WoC’s ability to cross-reference and track the

history of code versions across nearly all public repositories, along with its curated

data that addresses complex challenges like repository deforking Mockus et al. (2020)

and author ID aliasing Fry et al. (2020), makes this approach feasible.

We use a simple example to demonstrate the tracing and cross-referencing

capabilities of WoC. Suppose we take a single sample b (version or, in git terms,

blob) of source code from any training (or test) data. We can calculate git SHA-1 3

for this sample. All further calculations use git SHA-1 and do not require the content.

For a blob b to materialize in a version control repository, it has to be created by

a commit c. Git commits include the time of the commit, commit message, SHA-1 of

the parent commit(s) and SHA-1 of the tree (folder). WoC, by comparing the trees4

3Git SHA-1 is simply a SHA-1 calculated on the string (representing the content) with prepended
string “blob SIZE\0” where SIZE is the length of the content.

4WoC contains over 20B blobs.

148

of the commit and its parent(s) determines all the modifications to the project done

by the commit. Specifically, in case any of the project’s files are modified, it extracts

the tuple (bo, bm) representing the old and the new version of the file. These pairs are

associated with the commit and its other attributes, like time, author and commit

message.

Suppose there is a commit, ct(bo, bm), which addresses a vulnerability v in project

P . This commit, c, modifies a file f at time t, where the original version of the

file is represented by the blob bo and the modified version by bm. WoC’s cross-

referencing allows us to identify all repositories containing bo or bm, all relevant

commits, their parent and child commits, and the authors and projects associated

with these commits.

Typically, we need a repository and a commit to identify what files were changed,

their content before and after the change, as well as the parent commit. By collecting

and cross-referencing nearly all open source data, WoC allows us not only to go

forward in version history (see child commits), but also to identify all commits that

either created or modified a particular version of the file. To identify problems with

the LLM training data, we will first match it to blobs or commits in WoC. Both

the Stack and the Stack v2 contain versions of the files (blobs) and their git SHA-1

digests. We, therefore, just need the list of SHA-1 digests to match them to blobs

in WoC. We further assume that if there exists at least one commit that modifies

bo, and its commit log message contains keywords (described below) indicating that

it is a fix, then that blob is buggy. Similarly, if the commit indicates that it fixes a

vulnerability, we assume that modified blob contains vulnerability.

7.4.2 Identifying Potential Noncompliance

The Stack dataset provides information on repositories and their identified licenses for

all blobs. Since code reuse through copying is common among developers Jahanshahi

et al. (2024b), accurately tracing the originating projects for each blob can be

149

challenging. WoC addresses this by offering a map Jahanshahi and Mockus (2024)

that, for blobs found in multiple projects, sorts them by the commit time of each

blob’s creation, allowing us to identify its first occurrence and the repository where

it was initially committed. By comparing this origin information from WoC with the

data in the Stack, we can verify whether the originating repository of each blob has

been accurately identified.

If the origin identified by WoC does not match the origin listed in the Stack data,

we then analyze the licenses associated with both the WoC-identified originating

repository and those detected by the Stack. Using WoC’s license map Jahanshahi

et al. (2024a), we compare this information with the Stack’s license data to identify

potential instances of license noncompliance.

7.4.3 Sampling

We used a 1
128

th sample for certain quantitative analyses to balance computational

feasibility with representativeness. The sampling was based on SHA-1 hashes

of the blobs and commits, which ensures that the selection process is effectively

random. This approach maintains statistical robustness while significantly reducing

the computational overhead of processing the entire dataset.

7.5 Results and Discussions

7.5.1 Hidden Vulnerabilities

As described in Section 7.4, we first extract git SHA-1 for all blobs in the Stack v2

(full) and the-stack-v2-train-smol-ids (smol) datasets. The former has 582,933,549

and the latter has 87,175,702 unique blobs. The total number of blobs in WoC

version V3 (extracted at about the same time as the Stack v2) has over 26B blobs, or

almost 45 times more blobs than the full version and 300 times more than the small

deduplicated version.

150

Starting from these two lists of blobs5 we first obtained two maps to commits:

the first map links blobs to commits creating the blob (including the previous version

of the file), while the second map links to commits that modified the file, thereby

creating a new blob, as described in the previous section. Not all blobs could be

mapped to commits, as a small fraction did not appear in either map. This could

be due to certain code versions being created without a publicly accessible version

history or missing corresponding commits or trees in WoC.

Table 7.1 summarizes the blob counts for two evaluation datasets, based on a

1
128

th random sample determined by the SHA-1 hash of each blob. These counts can

be extrapolated to the full dataset by multiplying by 128.

From Table 7.1, we observe that approximately 2.5% of the blobs could not be

linked to any commits. Among the remaining blobs, 62% and 55% represent files that

were created without preceding blobs, i.e., they are the initial versions. Of these, only

5.5% and 4.6% had a newer version, meaning the majority were created but never

modified. Since the first version of frequently executed source code is rarely error-free,

this lack of updates suggests the code was likely not used in practice, raising concerns

about its overall quality.

Furthermore 17.3% and 10.2% of the blobs have a subsequent version(s). These

versions are likely fixing existing bugs, vulnerabilities, make code compatible with

newer versions of libraries, or add new functionality. Since the next version of the

code is known, it would make sense to replace the versions of the training data with

updated versions.

We further analyze the blobs that have been updated. Using the methodology

described in Mockus and Votta (2000), we identify likely bug fixes by searching

5The second list had only 26% overlap with the first list instead of being a strict subset of the
first.

151

Table 7.1: Counts in the blob sample

full smol
count % (row) count % (row)

1 Total 4,553,119 680,917
2 Missing 115,239 2.53 (1) 16,533 2.42 (1)

3 Have an old version 1,622,641 35.63 (1) 287,412 42.20 (1)
. .

4 First version 2,813,171 61.78 (1) 376,719 55.32 (1)
5 No new version 2,658,805 94.51 (4) 359,380 95.39 (4)

6 Have a new version 788,059 17.30 (1) 69,346 10.18 (1)
7 Found new versions 1,462,363 - 111,453 -

for terms fix, bug, issue, patch, error, resolve, correct, problem, and their common

variations, as well as cve in the commit messages6.

The results are shown in Table 7.2. It summarizes the counts for two evaluation

datasets, based on a 1
128

th random sample determined by the SHA-1 hash of each

commit that introduces a new version for a blob in the Stack dataset. These counts

similarly can be extrapolated to the full dataset by multiplying by 128.

Among the 5,068,635 blobs with newer versions, we find that 17.31% and 14.36%

of the blobs were updated by a fix commit. If we extrapolate the results, we see that

in total, 101M blobs in the current full Stack v2 database (representing 17.30% of

all blobs in it) can be updated to newer versions and 17.31% of these new versions

are bug fixes. For the smol dataset, we have 9M (representing 10.18% of all blobs in

it) that can be updated to newer versions and 14.36% of those are bug fixes. While

deduplication reduced the proportion of buggy samples, millions of them still remain

and can be easily fixed.

6grep -iwE ‘fix | fixes | fixing | bug | bugs | issue | issues | patch | patches

| error | errors | resolve | resolved | resolving | correct | corrects | corrected

| correcting | problem | problems | debug | debugs | debugged | debugging | cve’

152

Table 7.2: Counts in the new version commit sample

full smol
count % (row) count % (row)

1 Commits 835,699 104,782
2 Blobs 5,068,635 279,652
3 New versions 5,657,384 307,362

4 Fix commits 137,091 16.40 (1) 13,628 13.00 (1)
5 Fix blobs 877,811 17.31 (2) 40,168 14.36 (2)
6 Fix new versions 935,587 16.53 (3) 41,222 13.41 (3)

7 CVE commits 845 0.61 (4) 83 0.60 (4)
8 CVE blobs 20,765 2.36 (5) 756 1.88 (5)
9 CVE new versions 20,561 2.19 (6) 809 1.96 (6)
10 Distinct CVEs 851 78

Table 7.3: CVE counts in complete smol dataset

CVE commits CVE blobs Distinct CVEs

Count 11,907 19,944 6,947

Finally, we checked how many code sample have fixes to known vulnerabilities. To

do that we searched for the regular expression representing CVE “cve-[0-9]+-[0-9]+”

and found that 2.36% and 1.88% of the fixes in our sample relate to a known CVE.

Due to the important nature of known vulnerabilities, we further analyzed the

complete smol dataset—that is supposed to be most reliable version of the Stack

v2—to find blobs that have a newer version with fixes to known CVEs. The results

are shown in Table 7.3. We found that 19,944 blobs in the smol dataset have newer

versions that fixing a known CVE. These samples were changed by 11,907 commits

that mentioned 6,947 distinct CVEs in their commit message.

In summary, despite careful curation and employment of sophisticated heuristics,

even the clean version of the Stack v2 dataset contains millions of unfixed versions

of the code, including thousands of unfixed vulnerabilities that supports our first

hypothesis (H1).

153

Key Findings 1

1. 17.30% and 10.18% of blobs in the full and smol datastes, respectively,

have newer versions, out of which 17.31% and 14.36% are bug fixes.

2. 61.78% and 55.32% of blobs are the first version created, out of which

94.51% and 95.39% have no newer versions, meaning they were created

but never modified, suggesting low quality.

3. There are 19,944 blobs in the clean and deduplicated version of the Stack

v2 (smol) that have a newer version were a known security vulnerability

is being fixed.

4. In total, 6,947 known CVEs has been found in the smol dataset.

7.5.2 Potential Noncompliance

The Stack v2 dataset consists of code that is either licensed under permissive terms

or lacks a specified license. To address potential licensing concerns, the Stack v2

allows authors to opt out of inclusion in the dataset. It is important to note that

code without a license is distinct from unlicensed code. From a copyright perspective,

code without a license defaults to “all rights reserved” U.S. Copyright Office (2021),

which raises significant concerns about the inclusion of such code in this dataset.

As detailed in Section 7.4.2, we analyzed blobs within the dataset that were reused

across multiple OSS projects, as identified through WoC Jahanshahi and Mockus

(2024). For each blob, we determined its originating project—the project with the

earliest commit timestamp containing that blob—and cross-referenced it with the

corresponding project in the Stack dataset. The results are shown in Table 7.4.

The results indicate that 15.49% and 11.30% of blobs were reused at least once.

Furthermore, in 67.42% and 61.78% of instances, the originating projects identified

by the Stack dataset differ from those identified by WoC. This highlights the inherent

complexity of tracing the origins of code reused through copy-and-paste. WoC’s

154

Table 7.4: Reused blobs and their origin

full smol
count % (row) count % (row)

1 Total 582,933,549 87,175,702
2 Reused 90,303,809 15.49 (1) 9,848,987 11.30 (1)

3 Same 29,432,636 32.59 (2) 3,764,702 38.22 (2)
4 Different 60,871,173 67.41 (2) 6,084,285 61.78 (2)

Table 7.5: Reused blobs with different origins and their licenses

full smol
Stack v2 WoC count % (row) count % (row)

1 Different Origin 60,871,173 6,084,285

2 Same License 38,410,728 63.10 (1) 4,418,289 72.62 (1)
3 no license no license 26,604,621 69.26 (2) 3,269,149 73.99 (2)
4 permissive permissive 11,806,107 30.74 (2) 1,149,140 26.01 (2)

5 Different License 22,460,445 36.90 (1) 1,665,996 27.38 (1)
6 permissive no license 10,257,891 45.67 (5) 721,920 43.33 (5)
7 no license permissive 9,309,959 41.45 (5) 658,085 39.50 (5)
8 no license restrictive 1,868,500 8.32 (5) 193,358 11.61 (5)
9 permissive restrictive 1,024,095 4.56 (5) 92,633 5.56 (5)

ability to perform such identification stems from its comprehensive coverage of nearly

all open-source projects and their version histories.

Since cases with misidentified origins present a potential risk of license noncom-

pliance, we conducted a further investigation into the blobs with differing identified

origins. The detailed results of this analysis are presented in Table 7.5.

The results reveal that 36.90% and 27.38% of the blobs with misidentified origins

have licenses that differ from those identified in the Stack dataset. These discrepancies

fall into four distinct categories. In the first case, the Stack identifies the license as

permissive, while WoC identifies no license. In the second, the Stack identifies no

license, but WoC identifies a permissive license. The third case involves the Stack

identifying no license, while WoC identifies a restrictive license. Finally, in the fourth

155

case, the Stack identifies a permissive license, but WoC identifies a restrictive license.

Among these, the second scenario does not pose a compliance risk and may even

be advantageous, given the problematic nature of reusing code without a license, as

previously discussed. However, the first scenario still raises some concerns. The third

and fourth scenarios are particularly concerning as they indicate a high risk of license

noncompliance due to the blobs originating from projects with restrictive licenses.

In summary, our analysis reveals that even the smaller version of the Stack dataset

contains hundreds of thousands of blobs originating from projects with restrictive

licenses, raising significant legal compliance concerns for any LLM trained on this

dataset. These findings provide strong support for our second hypothesis (H2).

Key Findings 2

1. 15.49% and 11.30% of blobs in the full and smol datasets, respectively,
have been reused at least once. Among these, 64.41% and 61.78% have
origins that were misidentified.

2. 36.90% and 27.38% of blobs with misidentified origins have licenses that
differ from those identified in the dataset.

3. 12.88% and 17.17% of blobs with differing licenses are subject to a
restrictive license, presenting a significant risk of noncompliance.

7.6 Limitations

7.6.1 Internal Validity

Impact of Buggy Code Removal on Model Outputs

Eliminating all buggy code from pre-training or fine-tuning datasets does not

guarantee that the resulting LLM will generate bug-free code. However, it is

reasonable to assume that some generated code may replicate buggy patterns observed

in the training data. Therefore, removing bugs from the training data, especially

156

through a low-cost approach like ours, is a sensible step toward improving the model’s

output quality.

WoC Dataset Coverage

Some code may originate outside public version control systems or may simply not be

included in WoC’s collection. However, as demonstrated with the Stack v2 dataset,

only 2.5% of blobs could not be linked to commits already present in WoC, indicating

that this is a relatively minor issue.

Blob Updates and Quality

While updating blobs to newer versions eliminates known bugs, it can occasionally

introduce new and unknown bugs. However, in most projects, only a small proportion

of bug fixes result in new issues or fail to address the intended bugs. Consequently,

applying fixes generally enhances the overall quality of the training data.

Rebasing and Metadata Loss

Our approach relies on git SHA-1 hashes to track blobs, which ensures that content-

based identification is robust to rebasing. However, rebasing may obscure certain

metadata, such as precise commit lineage, which could limit the ability to fully trace

the historical context of some blobs.

Commit Keyword Usage for Fix Identification

Not all commits containing the keywords we used represent bug fixes, nor do all bug

fixes include these keywords in their commit messages. Despite this, applying all

changes, not just those identified as fixes, is likely necessary. These keywords and

similar ones have been widely used in prior research to identify changes related to

bug fixes. In our validation of 20 randomly selected commits, only three (15%) were

found not to be clearly bug fixes.

157

Reliability of CVE Detection

Our method successfully identified thousands of CVEs in the Stack v2 dataset,

leveraging commit messages as a primary indicator. However, this approach relies

on the presence of explicit references to CVEs in commit messages, which may

not comprehensively capture all vulnerabilities. For instance, CVEs that were not

documented in commit messages or introduced through transitive dependencies might

be missed. Future work could address this limitation by conducting a manual review

of a representative sample or validating the method against additional datasets to

evaluate recall more comprehensively.

7.6.2 Construct Validity

Impact of Dataset Vulnerabilities on Model Outputs

This study assumes that vulnerabilities and flaws in training datasets may influence

the quality and security of model outputs. While this assumption aligns with

logical inference and prior research on LLM behavior, direct empirical validation

of this relationship is currently lacking and represents an important avenue for future

research.

Never-Modified Code Assumption

While we suggest that never-modified code may indicate low use or untested quality,

this is based on logical inference rather than direct empirical evidence. Future studies

are needed to validate whether unmodified code consistently correlates with lower

reliability or usability in practice.

Blob Origin Identification

Identifying the origin of a blob is not always possible, particularly for blobs that did

not originate in open-source projects. Accurate identification requires comprehensive

158

access to all project data. However, the extensive coverage provided by WoC

significantly reduces this risk.

License Applicability Assumption

The licensing assumption for a blob is based on the identified license of the project

from which it originated. However, not all files within a project necessarily fall under

the project’s overarching license, as some files may have distinct individual licenses.

7.6.3 External Validity

New Bugs and Iterative Updates

Even if all known bugs are addressed at time t, new bugs will inevitably be discovered

at time t + 1. Therefore, regular updates are necessary. Fortunately, the approach

outlined here can be automated, allowing it to be efficiently applied to each new

version of the WoC dataset.

Updating to Latest Versions

The updated version of a blob may not always represent the latest available version.

As a result, the process may need to be repeated iteratively until the most recent fix

is applied. The median timestamp of the commits updating blobs was June 2020,

indicating that these updates were available well before the creation of the Stack v2

dataset in 2024.

7.7 Conclusions

Processes to ensure provenance, security, and compliance in SSCs are essential. This

project sets the stage for future work on the curating LLM training data and provide

several insights and interventions that can improve on the current state of the art.

159

Several notable observations emerge from our analysis. First, the largest open-

source training dataset, Stack v2, contains only a small fraction of all publicly

available source code versions. These datasets could be significantly enhanced

by incorporating intelligently selected data from comprehensive sources like WoC.

Second, between 10% and 20% of the versions have updates, even though the WoC

dataset version V3 is contemporaneous with Stack v2. Third, a substantial portion

of the training data includes files with known bug fixes. While newer versions may

incorporate updated APIs or additional features, applying these bug fixes is crucial to

prevent LLMs from being trained on buggy code. Fourth, such fixes can be leveraged

to train or align LLMs that specialize in generating changes or fixes. Fifth, training

datasets should prioritize heavily or moderately modified code, which often has fewer

bugs, rather than relying heavily on pristine, first-version code that dominates many

existing datasets. Finally, misidentified code origins have resulted in non-permissive

code being included in these datasets, raising compliance concerns.

Beyond improving the curation practices for LLM training data, this work also

introduces the concept of the LLM supply chain, highlighting its similarities to and

differences from traditional software supply chains.

While our primary focus has been on data curation for code LLMs, the insights

generalize to any scenario involving version-controlled data.

160

Chapter 8

Conclusions & Future Work

8.1 Summary of Findings

This dissertation has systematically investigated copy-based reuse in Open Source

Software (OSS) supply chains, shedding light on its prevalence, motivations, and

broader implications. The findings demonstrate that while copy-based reuse is a

common practice among developers, its unregulated nature leads to legal, security,

and maintainability risks.

The first part of the dissertation provided a foundation for understanding copy-

based reuse:

• Chapter 2 presented the methodology for dataset construction, involving large-

scale data collection and the development of heuristics to detect copy-based

reuse. This dataset serves as a crucial resource for further empirical studies in

this domain.

• Chapter 3 analyzed reuse patterns, showing that copy-based reuse is widespread

but unevenly distributed, often influenced by project size, programming

language, and licensing conditions. The chapter also identified recurring

clusters of reused code, including cases where modifications introduce security

vulnerabilities.

161

• Chapter 4 examined the developer perspective, revealing that many practi-

tioners engage in copy-based reuse for practical reasons such as performance

optimization and ease of integration, while others are unaware of the legal and

security risks associated with this practice.

The second part of the dissertation applied the detection method to real-world

challenges:

• Chapter 5 explored its implications for license detection in OSS projects,

demonstrating how license inconsistencies arise from untracked copy-based

reuse.

• Chapter 6 investigated noncompliance issues and their consequences, showing

that projects with copied code frequently violate original licensing terms, leading

to potential legal disputes and forced re-licensing.

• Chapter 7 extended the method to machine learning, identifying noncompliant

and vulnerable code in Large Language Model (LLM) pretraining datasets,

underscoring an overlooked risk in AI development.

8.2 Implications

8.2.1 For Developers

Copy-based reuse enables developers to save time and effort by leveraging existing

code. However, it introduces risks such as maintenance fragmentation, security

vulnerabilities, and outdated dependencies. To address these challenges, developers

should adopt tools and practices to track reused code, ensure compliance with

licensing requirements, and mitigate risks associated with unverified code quality.

Fostering a practice of systematically reviewing and documenting reused code not

only enhances its reliability and maintainability, but also contributes to the overall

162

sustainability of software projects. Additionally, staying informed about updates

to reused code and integrating these updates promptly can further reduce risks

associated with outdated or insecure components.

8.2.2 For Businesses

Businesses that rely on open source software must proactively address the inherent

risks of copy-based reuse, including security vulnerabilities and potential non-

compliance with licensing terms. Investing in robust tools for tracking and

maintaining reused code is critical to safeguarding the software supply chain. This

effort should encompass implementing workflows for regularly updating and reviewing

reused components.

Moreover, businesses should actively support smaller open source projects that

provide valuable code contributions. Such support not only enhances the quality and

reliability of business-critical software, but also fosters goodwill and collaboration

within the open source community. By taking these steps, businesses can effectively

mitigate risks while strengthening the ecosystem upon which they rely.

8.2.3 For the Open Source Community

The open source community plays an important role in ensuring the safe and

effective reuse of code. By promoting best practices for ethical and secure reuse,

such as adopting standardized licensing and improving quality benchmarks, the

community can minimize risks and build trust in shared resources. Equally important

is supporting small and medium-sized projects that contribute significantly to the

reusable code base. Providing mentorship, funding, and collaboration opportunities

can bolster the overall open source ecosystem, fostering innovation and cooperation

across projects.

Additionally, establishing centralized repositories or resources that facilitate

traceability and offer detailed metadata on provenance, authorship, and licensing can

163

streamline the reuse process and mitigate associated risks. These efforts collectively

enhance the reliability, sustainability, and scalability of open source software.

8.2.4 For Researchers and Educators

Researchers have a unique opportunity to investigate finer-grained reuse patterns,

such as instances involving slight modifications or partial reuse, to better understand

the factors influencing reuse and its long-term impact on software quality and security.

Such insights can guide the development of tools and methodologies that promote safe

and effective reuse practices.

Educators should integrate lessons on ethical reuse practices, licensing compliance,

and dependency management into software engineering curricula. By leveraging real-

world case studies and addressing practical challenges, such as balancing development

speed with security concerns, educators can equip future developers to navigate the

complexities of software reuse responsibly. This approach will help ensure that the

next generation of software professionals actively supports the sustainability and

growth of open source ecosystems.

8.2.5 For OSS Platform Maintainers

Platforms like GitHub and GitLab are well-positioned to enhance practices surround-

ing copy-based reuse. Improving traceability mechanisms to preserve provenance, au-

thorship, and licensing metadata is essential for minimizing risks such as unintentional

license violations and outdated dependencies. Integrating features for automated

detection of license conflicts, dependency vulnerabilities, and changes in reused code

can further empower developers to manage their projects efficiently and securely.

Additionally, platforms can offer educational resources and in-platform guidance

to encourage best practices for reuse and compliance. By fostering a culture of

informed and collaborative reuse, platform maintainers can contribute significantly

to the long-term sustainability and resilience of the open source ecosystem.

164

8.3 Future Work

8.3.1 Code-Snippet Granularity

We discussed in methodology section that going to a finer granularity than blob-level

to detect code reuse is not practically feasible. Nevertheless, there are approaches

that can make this a relatively more tractable problem. Specifically, hashing the

abstract syntax tree (AST) for each code snippet (such as classes or functions) in a

blob and mapping blobs to these hashes could potentially make finer-grained code

reuse detection more feasible.

Assuming an average of k code snippets for each of the 16 billion blobs, the parsing

and hashing operation has a complexity of O(n), resulting in O(16×109×k). We can

then perform a self-join on the created map of blob to syntax tree hash (b2AST) using

the AST hash as the key. The self-join complexity depends on the number of unique

hashes and their distribution. In the worst case, if every blob had unique hashes,

the join operation would approach O((16× 109 × k)2). However, the join complexity

would typically be significantly less if there are many common hashes. A more realistic

estimate assumes that the number of unique AST hashes h is much smaller than the

total number of entries in the b2AST map, making the join complexity closer to

O(h× 16× 109 × k). This join, although potentially large, can be more feasible than

pairwise comparisons of entire blobs due to the more efficient handling of common

hashes.

By examining code reuse at the granularity of code snippets, we could potentially

uncover a far more intricate network of reuse. This approach might reveal patterns

and practices that are not noticeable when looking solely at whole-file or blob-level

reuse. Although this increased complexity is challenging to manage, it offers valuable

opportunities for a more comprehensive analysis of reuse Jahanshahi and Mockus

(2024).

165

8.3.2 Dependency-Based Reuse

In this work, we aimed to demonstrate the prevalence and importance of copy-based

reuse. To gain a comprehensive understanding of code reuse, it is important to

analyze both copy-based and dependency-based reuse. Each type of reuse reveals

different aspects of how software developers leverage existing code in their projects.

By studying them side by side, we can paint a more complete picture of the extent

and nuances of reuse in software development. Ignoring one in favor of the other

would provide an incomplete narrative Jahanshahi and Mockus (2024).

8.3.3 Upstream Repository

As highlighted in the limitations section, we currently lack precise knowledge about

the source from which a repository reuses a file. We tend to assume it is from the

originating repository in all instances of copying. However, this assumption may not

capture the real-world complexity of reuse. To enhance our understanding of how

developers identify suitable repositories for reuse, we could potentially leverage meta-

heuristic algorithms or artificial intelligence techniques. These advanced methods

might enable us to predict the actual source of reused artifacts in each instance of

copying with greater accuracy Jahanshahi and Mockus (2024).

8.3.4 Open Source Software Supply Chain Network

Directed Acyclic Graphs (DAGs) have been instrumental in clone detection and

reuse literature due to their ability to model and analyze complex relationships

and dependencies between various software components. In the context of copy-

based reuse, the dataset created using the World of Code (WoC)1 infrastructure can

be leveraged to construct DAGs that represent the flow and reuse across different

repositories.

1For more information about how to access this data, please visit: https://github.com/

woc-hack/tutorial.

166

https://github.com/woc-hack/tutorial
https://github.com/woc-hack/tutorial

The dataset’s detailed tracking of blob copies, including their origins and

destinations, provides a rich source of data to map these relationships accurately.

By drawing DAGs, researchers can visualize and analyze the propagation of reused

blobs, identifying critical nodes (projects or blobs) that play a central role in the

reuse network. This visualization helps in understanding the structure and dynamics

of reuse, highlighting patterns such as the most reused blobs, the central projects

in the reuse network, and potential vulnerabilities or licensing issues propagating

through these reused blobs.

DAGs can reveal how reuse spreads across projects, helping to identify which

projects are the primary sources of reusable blobs and how code flows between

different projects. By mapping out the reuse network, it is possible to pinpoint

critical points where vulnerabilities or licensing issues could propagate, allowing for

targeted interventions to mitigate these risks. Understanding the reuse network also

aids in developing better tools and practices for managing code quality and ensuring

that reused code is maintained and updated consistently across all projects that use

it.

Studies on large-scale clone detection such as Sajnani et al. (2016) and Koschke

(2007) provide foundational methodologies for leveraging DAGs in these contexts.

These methodologies can be adapted and extended using our dataset to enhance the

understanding of copy-based reuse in open source software development.

8.3.5 Security Vulnerability Detection Tools

Reused code can propagate vulnerabilities across multiple projects Reid et al. (2022).

For instance, if a security flaw exists in a reused blob, it can potentially affect

all projects that include this blob. Analyzing the reuse patterns can help identify

critical points where vulnerabilities might spread and allow for proactive mitigation

measures. There have been notable incidents where widespread code reuse led to

security breaches. For example, the Heartbleed bug in OpenSSL had far-reaching

167

impacts due to the extensive reuse of the affected code across numerous projects.

Future research can focus on developing automated tools that scan reused code for

known vulnerabilities and suggest patches. This proactive approach can enhance the

security posture of software systems.

8.3.6 Compliance Detection Tools

Reused code may carry licensing obligations that need to be respected. Failure to

comply with these obligations can lead to legal disputes and financial penalties.

By understanding reuse patterns, organizations can ensure they meet licensing

requirements. There have been instances where companies faced legal challenges due

to improper reuse of code with restrictive licenses. For example, using GPL-licensed

code in a proprietary software without complying with GPL terms has led to lawsuits.

Developing tools that automatically check for license compliance when code is reused

can help organizations avoid legal pitfalls. These tools can flag potential issues and

provide guidance on how to resolve them.

8.3.7 Survey

Surveying projects’ owners to verify our noncompliance alarm accuracy might also

prove useful especially for research purposes.

8.3.8 Code Quality Enhancement Tools

Reused code may not always meet the quality standards of the adopting project.

Ensuring that reused code adheres to best practices and coding standards is essential

for maintaining overall code quality. Poorly written code can lead to maintenance

challenges and degraded performance in adopting projects. Future work can focus

on creating tools that assess the quality of reused code and suggest improvements.

These tools can analyze code for adherence to coding standards, detect code smells,

and recommend refactoring.

168

8.3.9 Package Managers

Developing package managers tailored for different programming languages and

communities can be highly beneficial. These managers can offer more relevant and

effective support for managing code reuse in specific environments. Additionally,

enhancing existing package managers with features such as reuse tracking, version

control, and automated updates can improve development efficiency and reduce the

associated risks of code reuse.

8.3.10 Autocuration Tool for LLM pretraining Datasets

A promising direction for future work is the development of automated curation tools

specifically designed to enhance the quality of datasets used for pre-training large

language models (LLMs) for code, such as Stack v2. Building on the cost-efficient

approach introduced in this paper, these tools could automatically identify and apply

patches for known fixes or vulnerabilities, ensuring that the datasets include secure

and reliable code. They could also locate and update blobs to their latest versions,

minimizing the inclusion of outdated or buggy code. Furthermore, the tools could

enhance license compliance by automatically detecting and removing code with non-

permissive licenses, ensuring that only code with appropriate licensing is included in

the dataset. The feasibility of such automation is demonstrated by the scalability and

efficiency of our approach in handling large-scale datasets. By automating these tasks,

the proposed tools would streamline the iterative updates required for maintaining

high-quality training data, ensuring practicality and cost-effectiveness in preparing

datasets for LLM pre-training.

8.3.11 Community Engagement

Engaging with open source communities to develop tools and practices that address

the unique needs of different ecosystems, and collaborating with these communities,

can ensure widespread adoption and effectiveness. Continuously gathering user

169

feedback and iterating on the tools to enhance their functionality and usability is

also important. This iterative process helps create robust and reliable tools that

meet the evolving needs of software developers.

8.4 Conclusions

This dissertation has provided an in-depth examination of copy-based reuse in open

source software (OSS), exploring its prevalence, motivations, and risks across a

vast ecosystem of projects. By leveraging the extensive World of Code (WoC)

infrastructure and integrating insights from developer surveys, our work sheds new

light on how and why code is replicated and adapted, and how these practices impact

the legal, security, and maintainability dimensions of software.

The findings reveal that copy-based reuse is remarkably common. While it can

offer considerable efficiency benefits—reducing development time, facilitating rapid

prototyping, and fostering collaboration—it also presents significant unregulated

risks. Our large-scale analysis confirms that a substantial fraction of OSS projects

contain reused blobs, often without clear provenance or licensing metadata, creating

uncertainty for both developers and organizations. Furthermore, this work under-

scores how license noncompliance and security vulnerabilities can propagate through

the supply chain unnoticed, potentially jeopardizing entire ecosystems that rely on

shared code.

Across the chapters, several recurrent themes and insights emerged:

1. Prevalence and Patterns of Copy-Based Reuse. We showed that reuse

varies by programming language, project size, and license type, indicating a

complex landscape of developer habits and community norms. Importantly,

binary blob reuse appears to be more prevalent than is often assumed,

emphasizing the need for tools and practices that handle diverse file formats.

170

2. Developer Motivations and Perspectives. The developer survey revealed

that practical considerations—such as ease of integration and performance

optimizations—often override concerns about licensing and security. At the

same time, many creators explicitly welcome reuse, consistent with an ethos

of open collaboration. This nuanced view reinforces the idea that developers

frequently operate under time pressures and knowledge gaps, rather than

intentional disregard for legal and security best practices.

3. Legal and Licensing Implications. Our analysis of licensing patterns

demonstrated how permissive licenses generally facilitate reuse, while more

restrictive licenses limit it in certain contexts. However, the negative or unclear

impact of public domain licensing indicates that ambiguous legal contexts

can deter reuse, highlighting the need for more consistent and transparent

licensing standards. This work also evidenced how reliance on dependency-

based detection alone can miss substantial portions of copy-based reuse, leading

to hidden legal risks.

4. Security and Compliance in Supply Chains. Chapters focusing on

noncompliance and vulnerabilities revealed how projects that incorporate copied

code can inadvertently carry forward bugs or violate license terms, leaving them

exposed to legal or reputational harm. Even more critically, when vulnerabilities

reside in widely reused blobs, they may compromise entire ecosystems. The

consequences extend to machine learning (ML) and Large Language Model

(LLM) pretraining datasets, where outdated or insecure code can pollute

training corpora.

5. Implications for OSS Platforms, Businesses, and the Community.

Given the central role of platforms like GitHub and GitLab, the importance

of facilitating traceability, automated license checks, and educational resources

cannot be overstated. Businesses, too, must invest in workflows that track and

maintain reused components to avoid costly noncompliance. Likewise, the open

171

source community can champion ethical, secure, and transparent practices for

shared code, thereby preserving OSS’s collaborative spirit while safeguarding

its integrity.

6. Future Directions. Beyond the scope of current methods, this dissertation

points to fine-grained detection at the snippet level, holistic dependency-based

analysis, and advanced heuristics or AI-driven approaches for tracing the true

“upstream” of reused code. These enhancements can help tackle the complexity

of partial file reuse and further refine our understanding of how code moves

through global software networks. The emergence of LLM supply chains

underscores the growing need for robust curation, where automated tools can

ensure high-quality and legally compliant data for training code models.

Collectively, these findings emphasize that copy-based reuse is both a powerful

enabler of innovation and a significant source of unseen risk. Addressing these

challenges will require coordinated efforts among developers, businesses, researchers,

educators, platform maintainers, and the broader OSS community. By developing

better detection tools, clearer license guidelines, and enhanced educational programs,

the ecosystem can harness the benefits of reuse while minimizing its drawbacks.

Ultimately, the work presented in this dissertation serves as an evidence-based

foundation for rethinking open source practices. As software continues to be built

upon layer after layer of shared code, the imperative grows for proactive and

collaborative management. It is our hope that these insights—supported by rigorous

empirical data and grounded in real-world developer perspectives—will spur ongoing

dialogue, research, and practical initiatives that fortify the OSS supply chain. In doing

so, we can realize the full promise of open source software as a secure, sustainable,

and freely shared global resource.

172

Bibliography

Agresti, A. (2012). Categorical data analysis, volume 792. John Wiley & Sons. 123

Ain, Q. U., Butt, W. H., Anwar, M. W., Azam, F., and Maqbool, B. (2019). A

systematic review on code clone detection. IEEE access, 7:86121–86144. 13, 34

Allal, L. B., Li, R., Kocetkov, D., Mou, C., Akiki, C., Ferrandis, C. M., Muennighoff,

N., Mishra, M., Gu, A., Dey, M., et al. (2023). Santacoder: don’t reach for the

stars! arXiv preprint arXiv:2301.03988. 140

Allamanis, M., Barr, E. T., Devanbu, P., and Sutton, C. (2018). A survey of machine

learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):1–

37. 143

Almeida, D. A., Murphy, G. C., Wilson, G., and Hoye, M. (2017). Do

software developers understand open source licenses? In 2017 IEEE/ACM 25th

International Conference on Program Comprehension (ICPC), pages 1–11. IEEE.

114

Almeida, D. A., Murphy, G. C., Wilson, G., and Hoye, M. (2019). Investigating

whether and how software developers understand open source software licensing.

Empirical Software Engineering, 24:211–239. 114

An, L., Mlouki, O., Khomh, F., and Antoniol, G. (2017). Stack overflow: A code

laundering platform? In 2017 IEEE 24th International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages 283–293. IEEE. 6

173

Angst, C. M., Agarwal, R., Sambamurthy, V., and Kelley, K. (2010). Social contagion

and information technology diffusion: The adoption of electronic medical records

in us hospitals. Management Science, 56(8):1219–1241. 28

Antoniol, G., Di Penta, M., and Merlo, E. (2004). An automatic approach to identify

class evolution discontinuities. In Proceedings. 7th International Workshop on

Principles of Software Evolution, 2004., pages 31–40. IEEE. 32

Austin, Z. and Sutton, J. (2014). Qualitative research: Getting started. The Canadian

journal of hospital pharmacy, 67(6):436. 81

Bissyandé, T. F., Thung, F., Lo, D., Jiang, L., and Réveillere, L. (2013). Popularity,

interoperability, and impact of programming languages in 100,000 open source

projects. In 2013 IEEE 37th annual computer software and applications conference,

pages 303–312. IEEE. 41, 111

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., and Damian, D. (2016).

Understanding the popular users: Following, affiliation influence and leadership

on github. Information and Software Technology, 70:30–39. 31, 32

Borges, H., Hora, A., and Valente, M. T. (2016). Predicting the popularity of github

repositories. In Proceedings of the The 12th international conference on predictive

models and data analytics in software engineering, pages 1–10. 39, 45, 111

Boughton, L., Miller, C., Acar, Y., Wermke, D., and Kästner, C. (2024). Decomposing

and measuring trust in open-source software supply chains. In Proceedings of the

2024 ACM/IEEE 44th International Conference on Software Engineering: New

Ideas and Emerging Results, pages 57–61. 6

Braun, V. and Clarke, V. (2006). Using thematic analysis in psychology. Qualitative

research in psychology, 3(2):77–101. 81, 82

Brewer, J. V. (2012). The Effects of Open Source License Choice on Software Reuse.

PhD thesis, Virginia Tech. 111, 117

174

Brown, A. W. and Wallnau, K. C. (1998). The current state of cbse. IEEE software,

15(5):37–46. 34

Capiluppi, A., Lago, P., and Morisio, M. (2003). Characteristics of open

source projects. In Seventh European Conference onSoftware Maintenance and

Reengineering, 2003. Proceedings., pages 317–327. IEEE. 43

Castleberry, A. and Nolen, A. (2018). Thematic analysis of qualitative research data:

Is it as easy as it sounds? Currents in pharmacy teaching and learning, 10(6):807–

815. 77

Christakis, N. A. and Fowler, J. H. (2013). Social contagion theory: examining

dynamic social networks and human behavior. Statistics in Medicine, 32:556–577.

28

Cox, R. (2019). Surviving software dependencies: Software reuse is finally here but

comes with risks. Queue, 17(2):24–47. 13, 34

Creswell, J. W. and Creswell, J. D. (2017). Research design: Qualitative, quantitative,

and mixed methods approaches. Sage publications. 77, 79

Crowston, K. and Howison, J. (2005). The social structure of free and open source

software development. 38, 44, 110

Cui, X., Wu, J., Wu, Y., Wang, X., Luo, T., Qu, S., Ling, X., and Yang, M.

(2023). An empirical study of license conflict in free and open source software. In

2023 IEEE/ACM 45th International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP), pages 495–505. IEEE. 114

Denzin, N. K. (2017). The research act: A theoretical introduction to sociological

methods. Routledge. 77

Di Penta, M., German, D. M., Guéhéneuc, Y.-G., and Antoniol, G. (2010). An

exploratory study of the evolution of software licensing. In Proceedings of the 32nd

175

ACM/IEEE International Conference on Software Engineering-Volume 1, pages

145–154. 6, 113

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.

R. G., Gruber, B., Lafourcade, B., Leitão, P. J., et al. (2013). Collinearity: a review

of methods to deal with it and a simulation study evaluating their performance.

Ecography, 36(1):27–46. 124

Fendt, O. and Jaeger, M. C. (2019). Open source for open source license compliance.

In Open Source Systems: 15th IFIP WG 2.13 International Conference, OSS 2019,

Montreal, QC, Canada, May 26–27, 2019, Proceedings 15, pages 133–138. Springer.

107

Feng, M., Mao, W., Yuan, Z., Xiao, Y., Ban, G., Wang, W., Wang, S., Tang, Q., Xu,

J., Su, H., et al. (2019). Open-source license violations of binary software at large

scale. In 2019 IEEE 26th International Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 564–568. IEEE. 3, 94, 114, 116

Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar, Y., Backes, M., and Fahl, S.

(2017). Stack overflow considered harmful? the impact of copy&paste on android

application security. In 2017 IEEE symposium on security and privacy (SP), pages

121–136. IEEE. 13, 33

Fitzgerald, B. (2006). The transformation of open source software. MIS quarterly,

pages 587–598. 120

Flint, S. W., Chauhan, J., and Dyer, R. (2021a). Escaping the time pit: Pitfalls and

guidelines for using time-based git data. In 2021 IEEE/ACM 18th International

Conference on Mining Software Repositories (MSR). 23

Flint, S. W., Chauhan, J., and Dyer, R. (2021b). Escaping the time pit: Pitfalls and

guidelines for using time-based git data. In 2021 IEEE/ACM 18th International

Conference on Mining Software Repositories (MSR), pages 85–96. IEEE. 71

176

Frakes, W. and Terry, C. (1996). Software reuse: metrics and models. ACM

Computing Surveys (CSUR), 28(2):415–435. 28

Frakes, W. B. and Fox, C. J. (1995). Sixteen questions about software reuse.

Communications of the ACM, 38(6):75–ff. 77

Frakes, W. B. and Kang, K. (2005). Software reuse research: Status and future. IEEE

transactions on Software Engineering, 31(7):529–536. 30

Frakes, W. B. and Succi, G. (2001). An industrial study of reuse, quality, and

productivity. Journal of Systems and Software, 57(2):99–106. 13, 34

Fry, T., Dey, T., Karnauch, A., and Mockus, A. (2020). A dataset and an approach

for identity resolution of 38 million author ids extracted from 2b git commits. In

Proceedings of the 17th international conference on mining software repositories,

pages 518–522. 14, 95, 118, 148

Gabel, M. and Su, Z. (2010). A study of the uniqueness of source code. In Proceedings

of the eighteenth ACM SIGSOFT international symposium on Foundations of

software engineering, pages 147–156. 42

Gamalielsson, J. and Lundell, B. (2014). Sustainability of open source software

communities beyond a fork: How and why has the libreoffice project evolved?

Journal of systems and Software, 89:128–145. 45, 111

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He,

H., Thite, A., Nabeshima, N., et al. (2020). The pile: An 800gb dataset of diverse

text for language modeling. arXiv preprint arXiv:2101.00027. 140

Geisterfer, C. M. and Ghosh, S. (2006). Software component specification: a study

in perspective of component selection and reuse. In Fifth International Conference

on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS’05), pages

9–pp. IEEE. 36

177

German, D. M. (2002). The evolution of the gnome project. In Proceedings of the

2nd Workshop on Open Source Software Engineering, pages 20–24. 31, 32

German, D. M., Di Penta, M., and Davies, J. (2010). Understanding and auditing the

licensing of open source software distributions. In 2010 IEEE 18th International

Conference on Program Comprehension, pages 84–93. IEEE. 107, 109, 113, 114

German, D. M., Di Penta, M., Gueheneuc, Y.-G., and Antoniol, G. (2009). Code

siblings: Technical and legal implications of copying code between applications. In

2009 6th IEEE International Working Conference on Mining Software Repositories,

pages 81–90. IEEE. 5

German, D. M. and Hassan, A. E. (2009). License integration patterns: Addressing

license mismatches in component-based development. In 2009 IEEE 31st

international conference on software engineering, pages 188–198. IEEE. 6

Gharehyazie, M., Ray, B., and Filkov, V. (2017). Some from here, some from

there: Cross-project code reuse in github. In 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR), pages 291–301. IEEE. 1, 13,

33

Gharehyazie, M., Ray, B., Keshani, M., Zavosht, M. S., Heydarnoori, A., and Filkov,

V. (2019). Cross-project code clones in github. Empirical Software Engineering,

24(3):1538–1573. 13, 33

Ghobadi, S. (2015). What drives knowledge sharing in software development teams:

A literature review and classification framework. Information & Management,

52(1):82–97. 14

Gkortzis, A., Feitosa, D., and Spinellis, D. (2021). Software reuse cuts both ways:

An empirical analysis of its relationship with security vulnerabilities. Journal of

Systems and Software, 172:110653. 5

178

Gonzalez-Barahona, J. M., Montes-Leon, S., Robles, G., and Zacchiroli, S.

(2023). The software heritage license dataset (2022 edition). Empirical Software

Engineering, 28(6):147. 93, 94, 102, 104

Gousios, G. (2013). The ghtorent dataset and tool suite. In 2013 10th Working

Conference on Mining Software Repositories (MSR), pages 233–236. IEEE. 44

Gousios, G. and Spinellis, D. (2012). Ghtorrent: Github’s data from a firehose. In

2012 9th IEEE Working Conference on Mining Software Repositories (MSR), pages

12–21. IEEE. 39

Guest, G., Bunce, A., and Johnson, L. (2006). How many interviews are enough? an

experiment with data saturation and variability. Field methods, 18(1):59–82. 80

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T., Del Giorno, A., Gopi, S.,

Javaheripi, M., Kauffmann, P., de Rosa, G., Saarikivi, O., et al. (2023). Textbooks

are all you need. arXiv preprint arXiv:2306.11644. 143, 144, 146

Haefliger, S., Von Krogh, G., and Spaeth, S. (2008). Code reuse in open source

software. Management science, 54(1):180–193. 1, 13, 33

Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., and Song, D. (2012).

Juxtapp: A scalable system for detecting code reuse among android applications.

In International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, pages 62–81. Springer. 13, 33, 34

Hata, H., Gaikovina Kula, R., Ishio, T., and Treude, C. (2021a). Research

artifact: The potential of meta-maintenance on github. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering: Companion Proceedings (ICSE-

Companion), pages 192–193. 13

Hata, H., Kula, R. G., Ishio, T., and Treude, C. (2021b). Research artifact: The

potential of meta-maintenance on github. In 2021 IEEE/ACM 43rd International

179

Conference on Software Engineering: Companion Proceedings (ICSE-Companion),

pages 192–193. IEEE. 33

Hata, H., Kula, R. G., Ishio, T., and Treude, C. (2021c). Same file, different

changes: The potential of meta-maintenance on github. In Proceedings of the 43rd

International Conference on Software Engineering, ICSE ’21, page 773–784. IEEE

Press. 13

Hata, H., Kula, R. G., Ishio, T., and Treude, C. (2021d). Same file, different

changes: the potential of meta-maintenance on github. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering (ICSE), pages 773–784. IEEE.

33

Heinemann, L., Deissenboeck, F., Gleirscher, M., Hummel, B., and Irlbeck, M. (2011).

On the extent and nature of software reuse in open source java projects. In

International Conference on Software Reuse, pages 207–222. Springer. 13, 33

Hosmer Jr, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic

regression. John Wiley & Sons. 41

Hubinger, E., Denison, C., Mu, J., Lambert, M., Tong, M., MacDiarmid, M.,

Lanham, T., Ziegler, D. M., Maxwell, T., Cheng, N., et al. (2024). Sleeper

agents: Training deceptive llms that persist through safety training. arXiv preprint

arXiv:2401.05566. 140

Inoue, K., Miyamoto, Y., German, D. M., and Ishio, T. (2021). Finding code-clone

snippets in large source-code collection by ccgrep. In Open Source Systems: 17th

IFIP WG 2.13 International Conference, OSS 2021, Virtual Event, May 12–13,

2021, Proceedings 17, pages 28–41. Springer. 13, 34

Jahanshahi, M. and Mockus, A. (2024). Dataset: Copy-based reuse in open source

software. In 2024 IEEE/ACM 21st International Conference on Mining Software

180

Repositories (MSR), pages 42–47. IEEE. 5, 6, 11, 26, 29, 30, 34, 71, 72, 73, 119,

150, 154, 165, 166

Jahanshahi, M. and Mockus, A. (2025). Cracks in the stack: Hidden vulnerabilities

and licensing risks in llm pre-training datasets. arXiv preprint arXiv:2501.02628.

138

Jahanshahi, M., Reid, D., McDaniel, A., and Mockus, A. (2024a). Oss license

identification at scale: A comprehensive dataset using world of code. arXiv preprint

arXiv:2409.04824. 91, 116, 118, 150

Jahanshahi, M., Reid, D., and Mockus, A. (2024b). Beyond dependencies: The

role of copy-based reuse in open source software development. arXiv preprint

arXiv:2409.04830. 25, 76, 107, 110, 111, 115, 117, 118, 142, 146, 149

Janjic, W., Hummel, O., Schumacher, M., and Atkinson, C. (2013). An unabridged

source code dataset for research in software reuse. In 2013 10th Working Conference

on Mining Software Repositories (MSR), pages 339–342. 13

Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007). Deckard: Scalable and

accurate tree-based detection of code clones. In 29th International Conference on

Software Engineering (ICSE’07), pages 96–105. IEEE. 13, 34, 39

Juergens, E., Deissenboeck, F., Hummel, B., and Wagner, S. (2009). Do code clones

matter? In 2009 IEEE 31st International Conference on Software Engineering,

pages 485–495. IEEE. 1, 6, 33, 35, 36, 85, 86, 87

Kapitsaki, G. M., Kramer, F., and Tselikas, N. D. (2017). Automating the license

compatibility process in open source software with spdx. Journal of systems and

software, 131:386–401. 99

Kapser, C. J. and Godfrey, M. W. (2008). “cloning considered harmful” considered

harmful: patterns of cloning in software. Empirical Software Engineering, 13:645–

692. 31

181

Kashima, Y., Hayase, Y., Yoshida, N., Manabe, Y., and Inoue, K. (2011). An

investigation into the impact of software licenses on copy-and-paste reuse among

oss projects. In 2011 18th Working Conference on Reverse Engineering, pages

28–32. IEEE. 111, 117

Kawamitsu, N., Ishio, T., Kanda, T., Kula, R. G., De Roover, C., and Inoue, K.

(2014a). Identifying source code reuse across repositories using lcs-based source

code similarity. In 2014 IEEE 14th International Working Conference on Source

Code Analysis and Manipulation, pages 305–314. 12

Kawamitsu, N., Ishio, T., Kanda, T., Kula, R. G., De Roover, C., and Inoue, K.

(2014b). Identifying source code reuse across repositories using lcs-based source

code similarity. In 2014 IEEE 14th international working conference on source

code analysis and manipulation, pages 305–314. IEEE. 29

Koch, S. and Schneider, G. (2002). Effort, co-operation and co-ordination in an open

source software project: Gnome. Information Systems Journal, 12(1):27–42. 38,

44, 110

Koschke, R. (2007). Survey of research on software clones. In Dagstuhl Seminar

Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 30, 167

Krejcie, R. V. and Morgan, D. W. (1970). Determining sample size for research

activities. Educational and psychological measurement, 30(3):607–610. 81

Krueger, C. (2001). Easing the transition to software mass customization. In

International Workshop on Software Product-Family Engineering, pages 282–293.

Springer. 31

Krueger, C. W. (1992). Software reuse. ACM Computing Surveys (CSUR), 24(2):131–

183. 1

182

Ladisa, P., Plate, H., Martinez, M., and Barais, O. (2023). Sok: Taxonomy of attacks

on open-source software supply chains. In 2023 IEEE Symposium on Security and

Privacy (SP), pages 1509–1526. IEEE. 4, 5, 110

Laurençon, H., Saulnier, L., Wang, T., Akiki, C., Villanova del Moral, A., Le Scao,

T., Von Werra, L., Mou, C., González Ponferrada, E., Nguyen, H., et al. (2022).

The bigscience roots corpus: A 1.6 tb composite multilingual dataset. Advances in

Neural Information Processing Systems, 35:31809–31826. 140

Laurent, A. M. S. (2004). Understanding open source and free software licensing:

guide to navigating licensing issues in existing & new software. ” O’Reilly Media,

Inc.”. 112, 120

Leskovec, J. and Faloutsos, C. (2006). Sampling from large graphs. In Proceedings

of the 12th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 631–636. 36

Lessig, L. (2004). How big media uses technology and the law to lock down culture

and control creativity. Retrieved December, 5:2004. 112

Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2006). Cp-miner: Finding copy-paste

and related bugs in large-scale software code. IEEE Transactions on software

Engineering, 32(3):176–192. 6

Liang, L., Wu, X., Deng, J., and Lv, X. (2022). Research on risk analysis

and governance measures of open-source components of information system

in transportation industry. Procedia Computer Science, 208:106–110. 7th

International Conference on Intelligent, Interactive Systems and Applications. 5

Lopes, C. V., Maj, P., Martins, P., Saini, V., Yang, D., Zitny, J., Sajnani, H., and

Vitek, J. (2017). Déjàvu: a map of code duplicates on github. Proceedings of the

ACM on Programming Languages, 1(OOPSLA):1–28. 13, 33

183

Lozano-Tello, A. and Gómez-Pérez, A. (2002). Baremo: how to choose the appropriate

software component using the analytic hierarchy process. In Proceedings of the 14th

international conference on Software engineering and knowledge engineering, pages

781–788. 28

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier, J., Tazi, N., Tang, A.,

Pykhtar, D., Liu, J., Wei, Y., et al. (2024). Starcoder 2 and the stack v2: The next

generation. arXiv preprint arXiv:2402.19173. 141, 143, 144

Lyulina, E. and Jahanshahi, M. (2021). Building the collaboration graph of open-

source software ecosystem. In 2021 IEEE/ACM 18th International Conference on

Mining Software Repositories (MSR), pages 618–620. 14

Ma, Y. (2018). Constructing supply chains in open source software. In 2018

IEEE/ACM 40th International Conference on Software Engineering: Companion

(ICSE-Companion), pages 458–459. IEEE. 14

Ma, Y., Bogart, C., Amreen, S., Zaretzki, R., and Mockus, A. (2019). World

of code: an infrastructure for mining the universe of open source vcs data. In

2019 IEEE/ACM 16th International Conference on Mining Software Repositories

(MSR), pages 143–154. IEEE. 14, 24, 72, 95, 116, 117, 141, 148

Ma, Y., Dey, T., Bogart, C., Amreen, S., Valiev, M., Tutko, A., Kennard, D., Zaretzki,

R., and Mockus, A. (2021). World of code: Enabling a research workflow for mining

and analyzing the universe of open source vcs data. Empirical Software Engineering,

26(2):1–42. 14, 93, 95, 118, 141, 148

Ma, Y., Mockus, A., Zaretzki, R., Bradley, R., and Bichescu, B. (2020). A

methodology for analyzing uptake of software technologies among developers. IEEE

Transactions on Software Engineering, 48(2):485–501. 28

Mason, M. et al. (2010). Sample size and saturation in phd studies using qualitative

interviews. 81

184

Mathur, A., Choudhary, H., Vashist, P., Thies, W., and Thilagam, S. (2012). An

empirical study of license violations in open source projects. In 2012 35th annual

IEEE software engineering workshop, pages 168–176. IEEE. 114

Mili, H., Mili, F., and Mili, A. (1995). Reusing software: Issues and research

directions. IEEE transactions on Software Engineering, 21(6):528–562. 34

Mitzenmacher, M. and Upfal, E. (2017). Probability and computing: Randomization

and probabilistic techniques in algorithms and data analysis. Cambridge university

press. 40

Mockus and Votta (2000). Identifying reasons for software changes using historic

databases. In Proceedings 2000 international conference on software maintenance,

pages 120–130. IEEE. 151

Mockus, A. (2007). Large-scale code reuse in open source software. In First

International Workshop on Emerging Trends in FLOSS Research and Development

(FLOSS’07: ICSE Workshops 2007), pages 7–7. IEEE. 13, 33, 40, 43, 44, 45, 77,

110

Mockus, A. (2019a). Insights from open source software supply chains

(keynote). In Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, ESEC/FSE 2019, page 3, New York, NY, USA. Association for

Computing Machinery. 3, 6

Mockus, A. (2019b). Insights from open source software supply chains (keynote).

In ESEC/FSE 2019, page 3, New York, NY, USA. Association for Computing

Machinery. 109, 142

Mockus, A. (2022). Tutorial: Open source software supply chains. 3, 109

Mockus, A. (2023). Securing large language model software supply chains. ASE’23

LLMs in Software Engineering. 3, 109

185

Mockus, A., Spinellis, D., Kotti, Z., and Dusing, G. J. (2020). A complete set of

related git repositories identified via community detection approaches based on

shared commits. In Proceedings of the 17th International Conference on Mining

Software Repositories, pages 513–517. 14, 15, 16, 95, 118, 148

Moglen, E. (2001). Free software matters: Enforcing the gpl, ii. Column in LinuxUser

Magazine (August 2001). 121

Moraes, J. P., Polato, I., Wiese, I., Saraiva, F., and Pinto, G. (2021). From one

to hundreds: multi-licensing in the javascript ecosystem. Empirical Software

Engineering, 26(3):39. 114

Noll, L. C. (2012). Fowler/noll/vo (fnv) hash. Accessed Jan. 18

Okafor, C., Schorlemmer, T. R., Torres-Arias, S., and Davis, J. C. (2022). Sok:

Analysis of software supply chain security by establishing secure design properties.

In Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive

Research and Ecosystem Defenses, pages 15–24. 5

Ombredanne, P. (2022). Scancode toolkit. https://aboutcode.org/scancode/.

Accessed 2022-01-25. 102

Ossher, J., Bajracharya, S., and Lopes, C. (2010). Automated dependency resolution

for open source software. In 2010 7th IEEE Working Conference on Mining

Software Repositories (MSR 2010), pages 130–140. IEEE. 13, 34

Papoutsoglou, M., Kapitsaki, G. M., German, D., and Angelis, L. (2022). An analysis

of open source software licensing questions in stack exchange sites. Journal of

Systems and Software, 183:111113. 114

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058. 2

186

https://aboutcode.org/scancode/

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., and Karri, R. (2022). Asleep at

the keyboard? assessing the security of github copilot’s code contributions. In 2022

IEEE Symposium on Security and Privacy (SP), pages 754–768. IEEE. 145

Phipps, S. and Zacchiroli, S. (2020). Continuous open source license compliance.

arXiv preprint arXiv:2011.08489. 107

Qiu, S., German, D. M., and Inoue, K. (2021). Empirical study on dependency-

related license violation in the javascript package ecosystem. Journal of Information

Processing, 29:296–304. 2, 114

Ray, B., Posnett, D., Filkov, V., and Devanbu, P. (2014). A large scale study of

programming languages and code quality in github. In Proceedings of the 22nd

ACM SIGSOFT international symposium on foundations of software engineering,

pages 155–165. 39

Reid, D., Jahanshahi, M., and Mockus, A. (2022). The extent of orphan vulnerabilities

from code reuse in open source software. In Proceedings of the 44th International

Conference on Software Engineering, pages 2104–2115. 3, 5, 48, 141, 143, 145, 167

Reid, D. and Mockus, A. (2023). Applying the universal version history concept

to help de-risk copy-based code reuse. In 2023 IEEE 23rd International Working

Conference on Source Code Analysis and Manipulation (SCAM), pages 1–12. IEEE.

93, 114, 141, 143

Roberts, J. A., Hann, I.-H., and Slaughter, S. A. (2006). Understanding the

motivations, participation, and performance of open source software developers:

A longitudinal study of the apache projects. Management Science, 52(7):984–999.

2

Rosen, L. (2005). Open source licensing. Software Freedom and Intellectual Property

Law. 113, 120

187

Roy, C. K. and Cordy, J. R. (2007). A survey on software clone detection research.

Queen’s School of Computing TR, 541(115):64–68. 31, 36, 86, 87

Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and evaluation of code

clone detection techniques and tools: A qualitative approach. Science of computer

programming, 74(7):470–495. 13, 33, 34, 35

Rubin, J. and Chechik, M. (2013). A survey of feature location techniques. 31

Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K., and Lopes, C. V. (2016). Sourcerercc:

Scaling code clone detection to big-code. In Proceedings of the 38th international

conference on software engineering, pages 1157–1168. 167

Samadi, M., Nikolaev, A., and Nagi, R. (2016). A subjective evidence model for

influence maximization in social networks. Omega, 59:263–278. 28

Schleimer, S., Wilkerson, D. S., and Aiken, A. (2003). Winnowing: local

algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, pages 76–85. 96

Serafini, D. and Zacchiroli, S. (2022). Efficient prior publication identification for

open source code. In Proceedings of the 18th International Symposium on Open

Collaboration, pages 1–8. 93

Shagall, Y. and Breithaupt, E. (2008). Jacobsen v. katzer: Federal circuit affirms

economic interest of open source copyright holder. Harvard Journal of Law &

Technology. Accessed: 2024-09-27. 108

Sim, S. E., Clarke, C. L., and Holt, R. C. (1998). Archetypal source code searches:

A survey of software developers and maintainers. In Proceedings. 6th International

Workshop on Program Comprehension. IWPC’98 (Cat. No. 98TB100242), pages

180–187. IEEE. 1

188

Software Freedom Law Center (2007). On behalf of busybox developers, sflc files first

ever u.s. gpl violation lawsuit. Accessed: 2024-09-27. 108

Sojer, M. and Henkel, J. (2010). Code reuse in open source software development:

Quantitative evidence, drivers, and impediments. Journal of the Association for

Information Systems, 11(12):2. 13, 33

Srinivas, C., Radhakrishna, V., and Rao, C. G. (2014). Clustering and classification

of software component for efficient component retrieval and building component

reuse libraries. Procedia Computer Science, 31:1044–1050. 36

Stallman, R. (2002). Free software, free society: Selected essays of Richard M.

Stallman. Lulu. com. 112, 121

Student (1908). The probable error of a mean. 43

Sutton, J. and Austin, Z. (2015). Qualitative research: Data collection, analysis, and

management. The Canadian journal of hospital pharmacy, 68(3):226. 81

Svajlenko, J., Keivanloo, I., and Roy, C. K. (2013). Scaling classical clone detection

tools for ultra-large datasets: An exploratory study. In 2013 7th International

Workshop on Software Clones (IWSC), pages 16–22. IEEE. 13, 34

Svajlenko, J. and Roy, C. K. (2014). Evaluating modern clone detection tools. In

2014 IEEE international conference on software maintenance and evolution, pages

321–330. IEEE. 31

Svajlenko, J. and Roy, C. K. (2015). Evaluating clone detection tools with

bigclonebench. In 2015 IEEE international conference on software maintenance

and evolution (ICSME), pages 131–140. IEEE. 31

Thompson, S. K. (2012). Sampling, volume 755. John Wiley & Sons. 123

189

Tsay, J., Dabbish, L., and Herbsleb, J. (2014). Influence of social and technical factors

for evaluating contribution in github. In Proceedings of the 36th international

conference on Software engineering, pages 356–366. 44, 111

Tuunanen, T. (2021). Tool support for open source software license compliance: The

first two decades of the millennium. JYU dissertations. 107

U.S. Copyright Office (2021). Circular 1: Copyright Basics. Library of Congress.

Accessed: January 5, 2025. 154

Välimäki, M. (2005). The rise of open source licensing: a challenge to the use of

intellectual property in the software industry. Turre publishing. 113

Vasilescu, B., Serebrenik, A., and Filkov, V. (2015). A data set for social diversity

studies of github teams. In 2015 IEEE/ACM 12th working conference on mining

software repositories, pages 514–517. IEEE. 45

Vatcheva, K. P., Lee, M., McCormick, J. B., and Rahbar, M. H. (2016).

Multicollinearity in regression analyses conducted in epidemiologic studies.

Epidemiology (Sunnyvale, Calif.), 6(2). 124

Vendome, C., Bavota, G., Penta, M. D., Linares-Vásquez, M., German, D., and

Poshyvanyk, D. (2017). License usage and changes: a large-scale study on github.

Empirical Software Engineering, 22:1537–1577. 103

Vendome, C., German, D. M., Di Penta, M., Bavota, G., Linares-Vásquez, M.,

and Poshyvanyk, D. (2018). To distribute or not to distribute? why licensing

bugs matter. In Proceedings of the 40th International Conference on Software

Engineering, pages 268–279. 107

Weiss, D. M. and Lai, C. T. R. (1999). Software product-line engineering: a family-

based software development process. Addison-Wesley Longman Publishing Co., Inc.

40, 41

190

Weller, K. and Kinder-Kurlanda, K. E. (2016). A manifesto for data sharing in social

media research. In Proceedings of the 8th ACM Conference on Web Science, pages

166–172. 42

White, M., Tufano, M., Vendome, C., and Poshyvanyk, D. (2016). Deep learning

code fragments for code clone detection. In 2016 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 87–98. IEEE. 13, 34

Wolter, T., Barcomb, A., Riehle, D., and Harutyunyan, N. (2023). Open source

license inconsistencies on github. ACM Transactions on Software Engineering and

Methodology, 32(5):1–23. 114

Wu, J., Bao, L., Yang, X., Xia, X., and Hu, X. (2024). A large-scale empirical study

of open source license usage: Practices and challenges. In 2024 IEEE/ACM 21st

International Conference on Mining Software Repositories (MSR), pages 595–606.

IEEE. 94, 113, 115

Wu, Y., Manabe, Y., Kanda, T., German, D. M., and Inoue, K. (2015). A method

to detect license inconsistencies in large-scale open source projects. In 2015

IEEE/ACM 12th Working Conference on Mining Software Repositories, pages 324–

333. IEEE. 114

Xavier, L., Brito, A., Hora, A., and Valente, M. T. (2017). Historical and

impact analysis of api breaking changes: A large-scale study. In 2017 IEEE

24th International Conference on Software Analysis, Evolution and Reengineering

(SANER), pages 138–147. IEEE. 142

Xu, S., Gao, Y., Fan, L., Liu, Z., Liu, Y., and Ji, H. (2023). Lidetector: License

incompatibility detection for open source software. ACM Transactions on Software

Engineering and Methodology, 32(1):1–28. 94, 115

Xu, W., Gao, K., He, H., and Zhou, M. (2024). A first look at license compliance

capability of llms in code generation. arXiv preprint arXiv:2408.02487. 107

191

Yan, D., Niu, Y., Liu, K., Liu, Z., Liu, Z., and Bissyandé, T. F. (2021). Estimating the

attack surface from residual vulnerabilities in open source software supply chain.

In 2021 IEEE 21st International Conference on Software Quality, Reliability and

Security (QRS), pages 493–502. IEEE. 4, 110

Yin, R. K. (2015). Qualitative research from start to finish. Guilford publications. 81

Zacchiroli, S. (2022). A large-scale dataset of (open source) license text variants. In

Proceedings of the 19th International Conference on Mining Software Repositories,

pages 757–761. 94

Zhao, S. (2023). Github copilot now has a better ai model and new capabilities. The

GitHub Blog. 140

Zhao, Y., Liang, R., Chen, X., and Zou, J. (2021). Evaluation indicators for open-

source software: a review. Cybersecurity, 4:1–24. 4, 5

Zhuge, H. (2002). Knowledge flow management for distributed team software

development. Knowledge-Based Systems, 15(8):465–471. 14

Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A., Rifkin, D., Simister, S.,

Sittampalam, G., and Aftandilian, E. (2022). Productivity assessment of neural

code completion. In Proceedings of the 6th ACM SIGPLAN International

Symposium on Machine Programming, pages 21–29. 140

192

Appendix A

License Types

List of SPDX license identifiers aggregated by their respective license types:

Permissive: 0BSD, AFL-3.0, Apache-2.0, BSD-2, BSD-2-Clause, BSD-3-Clause,

BSL-1.0, ISC, Libpng, MIT, MIT-0, MITNFA, MIT-Wu, MS-PL, OpenSSL, PHP-

3.01, Pixar, PSF-2.0, Ruby, SGI-B-2.0, TCL, WTFPL, Zlib

Copyleft: deprecated AGPL-3.0, deprecated GPL-3.0+, GPL-2.0, GPL-3.0+,

GPL-CC-1.0, OSL-3.0

Weak Copyleft: Artistic-1.0-Perl, Artistic-2.0, CDDL-1.0, deprecated LGPL-

2.1, eprecated LGPL-3.0, EPL-1.0, EPL-2.0, LGPL-2.0+, LGPL-3.0, MPL-1.1, MPL-

2.0-no-copyleft-exception

Conditional Open: CC-BY-3.0, CC-BY-4.0, CC-BY-SA-3.0, CC-BY-SA-4.0,

ODC-By-1.0, OFL-1.0, OFL-1.1

Public Domain: CC0-1.0, libtiff, Unlicense

193

Vita

Education

• Ph.D. in Computer Science

University of Tennessee, Knoxville May 2021 - May 2025

• M.Sc. in Industrial Engineering

Sharif University of Technology Sep 2011 - Sep 2013

• B.Sc. in Industrial Engineering

Mazandaran Institute of Technology Jan 2007 - Jul 2011

Professional Experience

• Graduate Research Assistant

University of Tennessee Knoxville May 2021 - Present

• Senior Data Scientist

Mobile Communications Company of Iran May 2019 - Apr 2020

• Strategic Investments Lead

Mobile Communications Company of Iran Feb 2018 - May 2019

• International Investment Analyst

Mobile Communications Company of Iran Feb 2016 - Feb 2018

194

Publications

• Jahanshahi, M., Reid, D., & Mockus, A. “Beyond Dependencies: The Role of

Copy-Based Reuse in Open Source Software Development”. Accepted in ACM

Transactions on Software Engineering and Methodology (TOSEM). 2025.

• Jahanshahi, M., Reid, D., McDaniel, A., & Mockus, A. “OSS License

Identification at Scale: A Comprehensive Dataset Using World of Code”.

Accepted in 2025 IEEE/ACM 22st International Conference on Mining Software

Repositories (MSR). IEEE, 2025.

• Jahanshahi M., Mockus A. “Cracks in The Stack: Hidden Vulnerabilities

and Licensing Risks in LLM Pre-Training Datasets”. Accepted in the Second

International Workshop on Large Language Models for Code (LLM4Code).

2025.

• Miller, C., Jahanshahi, M., Mockus, A., Vasilescu, B., & Kästner, C.

“Understanding the Response to Open-Source Dependency Abandonment in the

npm Ecosystem”. Accepted in the 47th International Conference on Software

Engineering (ICSE). 2025.

• Jahanshahi, M. & Mockus, A. “Dataset: Copy-based Reuse in Open Source

Software”. 2024 IEEE/ACM 21st International Conference on Mining Software

Repositories (MSR) (pp. 42-47). IEEE, 2024.

• Reid, D., Jahanshahi, M., & Mockus, A. “The extent of orphan vulnerabilities

from code reuse in open source software”. Proceedings of the 44th International

Conference on Software Engineering (ICSE) (pp. 2104-2115). 2022. Nominated

for ACM SIGSOFT Distinguished Paper Award.

• Lyulina, E., & Jahanshahi, M. “Building the collaboration graph of open-

source software ecosystem”. 2021 IEEE/ACM 18th International Conference

on Mining Software Repositories (MSR) (pp. 618-620). IEEE, 2021.

195

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Background
	1.1.1 Reuse in Software Supply Chains
	1.1.2 Associated Risks

	1.2 Research Objectives
	1.3 Structure of the Dissertation
	1.4 Contributions
	1.5 Dissertation Publications

	2 Detecting Copy-based Reuse
	2.1 Introduction
	2.2 Contribution
	2.3 Methodology
	2.3.1 World of Code Infrastructure
	2.3.2 Project Deforking
	2.3.3 Identification of reused blobs
	2.3.4 Time Complexity Analysis

	2.4 Dataset
	2.5 Limitations

	3 Beyond Dependencies
	3.1 Introduction
	3.2 Social Contagion Theory
	3.3 Related Work and Contributions
	3.3.1 Related Research Areas
	3.3.2 Contributions

	3.4 Methodology
	3.4.1 RQ1: How extensive is copying in the entire OSS landscape?
	3.4.2 RQ2: Is copy-based reuse limited to a particular group of projects?
	3.4.3 RQ3: Do characteristics of the blob affect the probability of reuse?
	3.4.4 RQ4: Do characteristics of the originating project affect the probability of reuse?

	3.5 Results & Discussions
	3.5.1 RQ1: How extensive is copying in the entire OSS landscape?
	3.5.2 RQ2: Is copy-based reuse limited to a particular group of projects?
	3.5.3 RQ3: Do characteristics of the blob affect the probability of reuse?
	3.5.4 RQ4: Do characteristics of the originating project affect the probability of reuse?

	3.6 Limitations
	3.6.1 Internal Validity
	3.6.2 External Validity

	3.7 Conclusions

	4 Survey
	4.1 Introduction
	4.2 Methodology
	4.2.1 Survey Content and Questions
	4.2.2 Sampling Strategy
	4.2.3 Survey Design
	4.2.4 Thematic Analysis

	4.3 Results & Discussions
	4.4 Limitations
	4.4.1 Survey Response Rate

	5 OSS License Identification at Scale
	5.1 Abstract
	5.2 Introduction
	5.3 Related Work and Contributions
	5.3.1 Comprehensive Identification of License Blobs
	5.3.2 Broad Scale and Scope of Analysis

	5.4 Methodology
	5.4.1 World of Code Infrastructure
	5.4.2 License Blob Identification
	5.4.3 Project to License Mapping
	5.4.4 P2L Verification
	5.4.5 Complementing Data

	5.5 Applications
	5.5.1 Ensuring License Compliance
	5.5.2 Analyzing Licensing Trends and Practices
	5.5.3 Supporting Ecosystem Studies and Tool Development

	5.6 Limitations

	6 The Intersection of Copy-Based Reuse and License Compliance
	6.1 Abstract
	6.2 Introduction
	6.3 Related Work and Knowledge Gaps
	6.3.1 Software Reuse
	6.3.2 Open Source Licenses
	6.3.3 Open Source License Compliance
	6.3.4 Our Study vs Prior Work

	6.4 Methodology
	6.4.1 World of Code Infrastructure
	6.4.2 Copy-based Reuse Network
	6.4.3 Potential License Noncompliance
	6.4.4 Copy-based vs. Dependency-based Reuse
	6.4.5 Regression Model

	6.5 Results and Discussion
	6.5.1 RQ1 - Regression Model
	6.5.2 RQ2 - Noncompliance

	6.6 Limitations
	6.6.1 Internal Validity
	6.6.2 External Validity

	6.7 Conclusions

	7 Hidden Vulnerabilities and Licensing Risks in LLM Pre-Training Datasets
	7.1 Abstract
	7.2 Introduction
	7.3 Background
	7.3.1 Types of Software Source Code Supply Chains
	7.3.2 The Promise and Challenges of Large Code Datasets
	7.3.3 The Stack v2 Dataset
	7.3.4 Motivation for This Study
	7.3.5 Contributions

	7.4 Methodology
	7.4.1 Key Concepts
	7.4.2 Identifying Potential Noncompliance
	7.4.3 Sampling

	7.5 Results and Discussions
	7.5.1 Hidden Vulnerabilities
	7.5.2 Potential Noncompliance

	7.6 Limitations
	7.6.1 Internal Validity
	7.6.2 Construct Validity
	7.6.3 External Validity

	7.7 Conclusions

	8 Conclusions & Future Work
	8.1 Summary of Findings
	8.2 Implications
	8.2.1 For Developers
	8.2.2 For Businesses
	8.2.3 For the Open Source Community
	8.2.4 For Researchers and Educators
	8.2.5 For OSS Platform Maintainers

	8.3 Future Work
	8.3.1 Code-Snippet Granularity
	8.3.2 Dependency-Based Reuse
	8.3.3 Upstream Repository
	8.3.4 Open Source Software Supply Chain Network
	8.3.5 Security Vulnerability Detection Tools
	8.3.6 Compliance Detection Tools
	8.3.7 Survey
	8.3.8 Code Quality Enhancement Tools
	8.3.9 Package Managers
	8.3.10 Autocuration Tool for LLM pretraining Datasets
	8.3.11 Community Engagement

	8.4 Conclusions

	Bibliography
	A License Types
	Vita

