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Gegen den Positivismus, welcher bei den Phanomenen stehen bleibt, “es gibt nur
Tatsachen”, wirde ich sagen: nein, gerade Tatsachen gibt es nicht, nur

Interpretationen.

Against positivism, which halts at phenomena — “There are only facts” — I would

say: No, facts is precisely what there is not, only interpretations.

- Friedrich Nietzsche
The Will to Power, §276 (Kroner ed.), §481 (trans. Kaufmann & Hollingdale)



Abstract

This dissertation investigates copy-based reuse in open source software (OSS) supply
chains, emphasizing its identification, analysis, and potential impacts.

First, we develop a novel algorithm to identify copy-based reuse by detecting
whole-file copying across the global OSS ecosystem. Leveraging the World of Code
infrastructure, we generate a large-scale map of copy-based reuse instances, providing
a foundation for future research and tool development to support reuse practices and
mitigate associated risks.

Next, we analyze the prevalence, patterns, and motivations behind copy-based
reuse. By integrating large-scale reuse detection with developer surveys, we find that
copy-based reuse is widespread and varies by programming language, resource type,
and project size. Popular projects drive substantial reuse activity, yet more than
half of copied resources originate from small and medium-sized projects. Developers
cite diverse motivations for copying code, including convenience and trust, while
expressing a preference for package managers when feasible.

Our first case study examines the implications of copy-based reuse for OSS license
compliance. We construct a copy-based code reuse network and quantify potential
license noncompliance across the OSS ecosystem. Our analysis reveals that projects
with permissive licenses, such as MIT and Apache, experience higher reuse rates,
whereas copyleft licenses, like GPL, yield mixed effects. Alarmingly, 39.4% of reuse
instances present a risk of noncompliance, particularly when license information is

absent or ambiguous.
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The second case study investigates the impact of copy-based reuse on LLM
pretraining datasets. We propose an automated source code autocuration technique
that utilizes OSS version histories to detect and filter outdated, buggy, and non-
compliant code. Evaluating this approach on “The Stack” v2 dataset, we find that
17% of code samples have newer versions, with 17% of these updates addressing bugs,
including known vulnerabilities (CVEs). Additionally, we identify serious compliance
risks from misidentified blob origins, which introduce non-permissively licensed code
into training datasets.

Collectively, this work provides novel insights and practical contributions to
understanding and managing copy-based reuse in OSS supply chains. It offers
foundational tools and datasets to advance research, informs policy on software
licensing practices, and proposes methods to enhance the quality and compliance

of Al model training datasets.
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Chapter 1

Introduction

Software reuse refers to the practice of developing software systems from existing
software rather than creating them from scratch Krueger (1992). Starting from
scratch may demand more time and effort than reusing pre-existing, high-quality code
that fits the required task. Developers, therefore, opportunistically and frequently
reuse code Juergens et al. (2009). Programming for clearly defined problems often
starts with a search in code repositories, typically followed by careful copying and
pasting of the relevant code Sim et al. (1998).

The fundamental principle of Open Source Software (OSS) lies in its “openness”,
which enables anyone to access, inspect, and reuse any artifact of a project.
This could significantly enhance the efficiency of the software development process.
Platforms such as GitHub increase reuse opportunities by enabling the community of
developers to curate software projects and by promoting and improving the process
of opportunistic discovery and reuse of artifacts. A significant portion of OSS is
intentionally built to be reused, offering resources or functionality to other software
projects Haefliger et al. (2008), thus such reuse can be categorized as one of the
building blocks of OSS. Indeed, developers in the open source community not only
seek opportunities to reuse existing high-quality code, but also actively promote their

own well-crafted artifacts for others to utilize Gharchyazie et al. (2017). Being widely



reused not only increases the popularity of the software project and its maintainers
while providing them with job prospects Roberts et al. (2006), but also may bring
new maintainers as well as corporate support.

Most commonly, code reuse refers to the introduction of explicit dependencies
on the functionality provided by ready-made packages, libraries, frameworks, or
platforms maintained by other projects (referred to as dependency-based or black-
box reuse). Such external code is not modified by the developer and, generally,
not committed into the project’s repository but relied upon via a package manager.
Copy-based reuse (or white-box reuse), on the other hand, refers to the case where
source code (or other reusable artifacts) is reused by copying the original code and
committing the duplicate code into a new repository. It may remain the same or be
modified by the developer after reuse. We specifically focus on copy-based reuse in
this study.

While it is generally accepted that programs should be modular Parnas (1972),
with internal implementation details not exposed outside the module, copy-based
reuse does exactly the opposite. OSS’s copy-based reuse, where any source code file
or even a code snippet can be reused in another project, may result in multiple,
possibly modified instances of the same source code replicated across various files and
repositories. These copies may undergo further changes during maintenance, leading
to multiple different versions of the originally identical code existing in the latest
releases of corresponding projects. Unifying such multiplicity of versions in copy-
based reuse to refactor it into a single package that all these projects could depend
upon may not always be a tractable problem.

Moreover, as this reuse process continues across various projects, possibly with
some modifications, data related to the initial design, authorship, copyright status,
and licensing could be lost Qiu et al. (2021). This loss could impede future
enhancements and bug-fixing efforts. It might also diminish the motivation for
original authors who seek recognition for their work and lead to legal complications

for downstream users. These issues impact not only those who reuse the code but



also the software dependent on at least one package that involves reused code Feng
et al. (2019).

As the landscape of Open Source Software (OSS) expands, tracing the origins
of source code, identifying high-quality code suitable for reuse, and deciphering
the simultaneous progression of code across numerous projects become increasingly
challenging. This can pose risks, such as the spread of potentially low-quality or

vulnerable code (e.g, orphan vulnerabilities Reid et al. (2022)).

1.1 Background

1.1.1 Reuse in Software Supply Chains

A software supply chain comprises various components, libraries, tools, and processes
used to develop, build, and publish software artifacts. It covers all stages from
initial development to final deployment, including proprietary and open source
code, configurations, binaries, plugins, container dependencies, and the infrastructure
required to integrate these elements. The software supply chain ensures that the
right components are delivered to the right places and at the right times to create
functioning software products. Software reuse is one form of the software supply
chain that enhances efficiency, reduces costs, and mitigates the risks associated with
developing new software from scratch.

In the context of open source software, reuse in software supply chains can be
categorized based on how the open source components are integrated and utilized

within software projects Mockus (2019a, 2022, 2023).

Dependency-based Reuse

Dependency-based reuse involves using open source libraries and packages as depen-
dencies in a project. These dependencies are typically managed through package

managers such as NPM for JavaScript, pip for Python, or Maven for Java. The



reliance on these dependencies can introduce vulnerabilities and risks if not properly
managed Yan et al. (2021). A web application using the React library, which in turn
depends on numerous other libraries is an example of reuse in this kind of supply

chain.

Copy-based Reuse

Copy-based reuse is the type of reuse investigated in this work. In copy-based reuse,
code from open source projects is copied directly into a project. For example, a
developer might copy a utility function from an open source repository and integrate
it into their own project. While this approach is quick, it can lead to challenges in
maintaining and updating the copied code. It is essential to track and manage these

copies to ensure they are secure and up-to-date Ladisa et al. (2023).

Knowledge-based Reuse

Knowledge-based reuse involves using knowledge and practices derived from open
source projects without directly copying code or using dependencies. It includes the
adoption of development methodologies, architectural patterns, and best practices
from open source communities. For example, implementing a microservices archi-
tecture inspired by successful open source projects. While not explicitly detailed
by many researchers, the concept of knowledge-based supply chains is inferred from
broader discussions of open source influence on software development practices Zhao

et al. (2021).

1.1.2 Associated Risks

While reuse can potentially reduce development costs, it is not always beneficial.
It could introduce certain risks that might eventually escalate the overall costs of

a project. These risks include, but are not limited to, security vulnerabilities,



compliance, and the spread of bugs or low-quality code Jahanshahi and Mockus

(2024); German et al. (2009).

Security

The relationship between security and reuse can possess a dual-nature: a system
can become more secure by leveraging mature dependencies, but it can also
become more vulnerable by creating a larger attack surface through exploitable
dependencies Gkortzis et al. (2021).

In the context of copy-based reuse, extensive code copying can lead to the
widespread dissemination of potentially vulnerable code. These artifacts may reside
not only in inactive projects (that are still publicly available for others to reuse and
potentially spread the vulnerability further), but also in highly popular and active
projects Reid et al. (2022).

Understanding the copy-based supply chain helps in identifying potential security
risks and implementing appropriate safeguards Okafor et al. (2022). Therefore, de-
tecting reused code aids in identifying and consistently patching these vulnerabilities

across all affected systems Ladisa et al. (2023).

Compliance

Many open source licenses come with specific requirements that must be met.
Unintentional reuse of code that is subject to intellectual property (IP) rights or
licensing restrictions can lead to legal complications. Understanding the supply
chain and detecting reused artifacts ensures compliance with licensing agreements
and protects against IP infringements Liang et al. (2022); Zhao et al. (2021).

As software systems evolve, their licenses evolve as well. This evolution can be
driven by various factors such as changes in the legal environment, commercial code
being licensed as free and open source, or code that has been reused from other open

source systems. The evolution of licensing can impact how a system or its parts can



be subsequently reused Jahanshahi and Mockus (2024). Therefore, monitoring this
evolution is important Di Penta et al. (2010). However, keeping track of the vast
amount of data across the entire OSS landscape is a challenging task, and as a result,
many developers fail to adhere to licensing requirements An et al. (2017); German
and Hassan (2009).

For example, investigating a subset of codes reused in the Stack Overflow
environment revealed an extensive number of potential license violations An et al.
(2017). Even when all license requirements are known, the challenge of combining
software components with different and possibly incompatible licenses to create a
software application that complies with all licenses, while potentially having its own,
persists and is of great importance German and Hassan (2009). When individual files
are reused, licensing information may be lost, and the findings of our study might

suggest approaches to identify and remediate such problems.

Quality

Ensuring that all components of the supply chain meet quality standards is essential
for the reliability and performance of the final product Boughton et al. (2024). Copied
code that has not been thoroughly vetted and tested can introduce bugs and defects.
By identifying and evaluating such reused code, organizations can ensure that it meets
their quality standards Mockus (2019a).

Code reuse is not only assumed to escalate maintenance costs under specific
conditions, but it is also seen as prone to defects. This is because inconsistent
modifications to duplicated code can result in unpredictable behavior Juergens et al.
(2009). Additionally, failure to consistently modify identifiers (such as variables,
functions, types, etc.) throughout the reused code can lead to errors that often bypass
compile-time checks and transform into hidden bugs that are extremely challenging
to detect Li et al. (2006).

Apart from the bugs introduced through code reuse, the source code itself could

have inherent bugs or be of low quality. These issues can propagate similarly to how



security vulnerabilities spread. The patterns of reuse identified in this study could
potentially suggest strategies to leverage information gathered from multiple projects

with reused code, thereby reducing such risks.

1.2 Research Objectives

This dissertation investigates the phenomenon of copy-based reuse in OSS supply

chains, addressing the following core research questions:

1. How prevalent is copy-based reuse in OSS projects?

2. Can automated methods be developed to detect and analyze copy-based reuse

at scale?

3. What are the motivations and practices of developers who engage in copy-based

reuse?
4. How does copy-based reuse impact software licensing and compliance?

5. What are the broader implications of copy-based reuse in machine learning and

large-scale software security?

To address these questions, this research introduces a novel method for detecting
and analyzing copy-based reuse at scale. By applying this method to real-world OSS
projects, this dissertation provides insights into how developers reuse code, the risks

associated with such practices, and the potential solutions to improve its reliability.

1.3 Structure of the Dissertation

This dissertation is divided into two main parts: the first focuses on the understanding
and analysis of copy-based reuse, while the second explores its applications.

Specifically, in the first part:



e Chapter 2 details the methodology for constructing a large-scale dataset
that identifies copy-based reuse in OSS projects. It describes data collection,

preprocessing, and validation techniques.

e Chapter 3 presents an in-depth analysis of copy-based reuse, examining its

prevalence, common practices, and patterns in the OSS ecosystem.

e Chapter 4 investigates developer perspectives through a survey, exploring their

motivations, challenges, and practical considerations of copy-based reuse.

The second part of the dissertation applies the proposed method to practical

challenges:

e Chapter 5 explores how copy-based reuse impacts software licensing and
presents an automated method to detect licensing inconsistencies across OSS

projects.

e Chapter 6 analyzes noncompliance issues, examining how copy-based reuse

contributes to legal and security risks in OSS supply chains.

e Chapter 7 extends the analysis to machine learning, investigating how copy-
based reuse affects large-scale pretraining datasets and the implications for

security and compliance in Al models.

Finally, Chapter 8 concludes the dissertation by summarizing key findings,

discussing limitations, and outlining future research directions.

1.4 Contributions

Understanding and addressing copy-based reuse is critical for ensuring sustainable
and legally compliant OSS development. This dissertation provides a systematic
framework for analyzing this phenomenon, shedding light on its implications for

software supply chains, licensing, and security. The findings have significant relevance



for software developers, legal experts, and Al practitioners, guiding best practices
for software reuse in an increasingly interconnected digital world. Specifically, this
dissertation makes the following contributions to the field of software engineering and

open-source software research:

1. A Large-Scale Dataset for Copy-Based Reuse Detection: The first

dataset of its kind to systematically track copy-based reuse across OSS projects.

2. Empirical Analysis of Copy-Based Reuse: A comprehensive study of the

prevalence, patterns, and developer motivations behind this practice.

3. A Large-Scale Dataset for OSS License Identification: The first dataset
of its kind to systematically find license files with minor variations and map

them to projects in which they reside across OSS.

4. Automated Methods for Licensing and Compliance Detection: Novel

techniques for detecting license noncompliance in OSS.

5. Security Implications in Machine Learning: An exploration of how copy-

based reuse introduces vulnerabilities in Al training datasets.

6. Policy and Tooling Recommendations: Practical suggestions for OSS
communities, developers, and policymakers to improve compliance and security

in software reuse.

1.5 Dissertation Publications

Each chapter of this dissertation corresponds to a separate published or submitted
paper, with the exception of Chapters 3 and 4, which are published as a single paper.
Chapter 6 has been submitted for publication but has not yet been accepted. The
copyright for these publications is held by the respective publishers, and reproduction
in this dissertation is in accordance with their policies.

Below are the details of these publications:



e Chapter 2: Jahanshahi, M. & Mockus, A. (2024, April). ”"Dataset: Copy-
based Reuse in Open Source Software.” In 202/ IEEE/ACM 21st International
Conference on Mining Software Repositories (MSR) (pp. 42-47). IEEE.

e Chapters 3 & 4: Jahanshahi, M., Reid, D., & Mockus, A. ”Beyond
Dependencies: The Role of Copy-Based Reuse in Open Source Software

Development.” Accepted in ACM Transactions on Software Engineering and

Methodology (TOSEM).

e Chapter 5: Jahanshahi, M., Reid, D., McDaniel, A., & Mockus, A. ”OSS
License Identification at Scale: A Comprehensive Dataset Using World of
Code.” Accepted in IEEE/ACM 22nd International Conference on Mining
Software Repositories (MSR 2025). IEEE.

e Chapter 6: Submitted to a conference, currently under review.

e Chapter 7: Jahanshahi, M. & Mockus, A. ”Cracks in The Stack: Hidden
Vulnerabilities and Licensing Risks in LLM Pre-Training Datasets.” Accepted in
Second International Workshop on Large Language Models for Code (LLM/Code
2025).

Across all these publications, I was responsible for the conceptualization of the
research, data collection, analysis, and manuscript writing. My co-authors, David
Reid and Adam McDaniel, contributed to data validation in some cases. Dr. Audris
Mockus, as my advisor, provided guidance and mentorship throughout the entire

research and publication process.
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Chapter 2

Detecting Copy-based Reuse

Disclosure Statement

A version of this chapter was originally published as Jahanshahi and Mockus (2024):

Mahmoud Jahanshahi and Audris Mockus. 2024. Dataset: Copy-based Reuse
in Open Source Software. In Proceedings of the 21st International Conference on
Mining Software Repositories (MSR ’24). Association for Computing Machinery, New
York, NY, USA, 42-47.

Available at: https://doi.org/10.1145/3643991.3644868

This material is included in accordance with ACM’s policies on thesis and
dissertation reuse. (C) 2024 Copyright held by the owner/author(s). Publication
rights licensed to ACM.

2.1 Introduction

This dataset seeks to encourage the studies of copy-based reuse by providing copying
activity data that captures whole-file reuse in nearly all OSS. To accomplish that, we
develop approaches to detect copy-based reuse by developing an efficient algorithm

that exploits World of Code infrastructure: a curated and cross referenced collection
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of nearly all open source repositories. We expect this data will enable future research
and tool development that support such reuse and minimize associated risks.

A better understanding of code copying practices may suggest future research on
approaches or tools that make productivity improvements even greater while, at the
same time, helping to minimize inherent risks of copying. Specifically, we aim to
provide a copy-based reuse dataset to enable further analysis of aspects concerning
the extent and the nature of reuse in OSS and to provide information necessary to
investigate approaches that support this common activity, make it more efficient, and
safer.

First, we create a measurement framework that tracks all versions of source code
(we refer to a single version as a blob in keeping with the terminology of the version
control system git) across all repositories. The time when each unique blob b was
first committed to each project P is denoted as t,(P). The first repository P,(b) =
ArgMinp t,(P) is referred to as the the originating repository for b. Next, copy
instances are identified via projects pairs: a project with the originating commit and

the destination project with one of the subsequent commits producing the same blob

(Po(b)7 Pd(b))

2.2 Contribution

To the best of our knowledge no curation system exists at the level of a blob, nor is
there an easy way for anyone to determine the extent of copy-based reuse at that level
and the introduced reuse identification methods (such as Kawamitsu et al. (2014a))
find reuse between given input projects and are not easily scalable to find reuse
across all OSS repositories. The methods we use to identify reuse could, therefore,
provide a basis for tools that expose these hard-to-obtain yet potentially important
phenomenon.

Our dataset has two important aspects. First, we present the copying activity

at the whole open source software ecosystem level. Previous provided datasets
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normally focus on a specific programming language (e.g. Java as in Janjic et al.
(2013)) and the data used in previous works investigating copying have as well mostly
concentrated on a small subset of a specific community (e.g. Java language, Android
apps, etc.) Heinemann et al. (2011); Haefliger et al. (2008); Mockus (2007); Hanna
et al. (2012); Fischer et al. (2017); Sojer and Henkel (2010) or sampled from a single
hosting platform (e.g. GitHub) Gharehyazie et al. (2017, 2019). Even research more
comprehensive in programming language coverage Lopes et al. (2017) considered only
a subset of programming languages and more importantly, used convenience sampling
by excluding less active repositories Hata et al. (2021c,a). Furthermore, almost all
research only focus on code reuse whereas our dataset tracks all artifacts whether they
are code or other reusable development resources, such as images or documentation.

Second, copy-based reuse has not been as extensively investigated as the dependency-
based reuse, e.g., Cox (2019); Frakes and Succi (2001); Ossher et al. (2010). Copy-
based reuse is, potentially, no less important, but much less understood form of reuse.
In fact, most of the efforts in copy-based reuse domain are focused on clone detection?
tools and techniques Roy et al. (2009); Ain et al. (2019); Jiang et al. (2007); Hanna
et al. (2012); White et al. (2016), not on the properties of files that are being reused or
projects that produce or reuse artifacts. Clone detection tools and techniques usually
take a snippet of code as input and then try to find similar code snippets in a target
directory or an specific domain Inoue et al. (2021); Svajlenko et al. (2013) whereas in
our dataset, we are finding all instances of reuse in nearly entirety of OSS.

The description and the curation methods of this dataset has not been published
before. Furthermore, although the dataset is now publicly available through WoC?,
to the best of our knowledge, the data has not been used by authors or others in any

published paper yet.

lidentification of, often, relatively small snippets of code within a single or a limited number of
projects
2Tt has been made available only recently
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2.3 Methodology

We start by briefly outlining World of Code infrastructure we employed to create our

dataset and then present the methods used to identify instances of copying.

2.3.1 World of Code Infrastructure

Finding duplicate pieces of code and all revisions of that code across all open
source projects is a data and computation intensive task due to the vast number
of OSS projects hosted on numerous platforms. Previous research on code reuse
has, therefore, typically looked at a relatively small subset of open source software
potentially missing the full extent of copying that could only be obtained with a nearly
complete collection. World of Code (WoC) Ma et al. (2019, 2021) infrastructure
attempts to remedy this by, on a regular basis, discovering publicly available new and
updated version control repositories, retrieving complete information (or updates)
in them, indexing and cross-referencing retrieved objects, conducting auto-curation
involving author aliasing Fry et al. (2020) and repository deforking Mockus et al.
(2020), and provides shell, Python and web APIs to support creation of various
research workflows. The source code version control systems in WoC are collected
from hundreds of forges and, after complete deduplication, takes approximately
300TB of disk space for the most recent snapshot we use for our dataset®. The
specific objective of WoC is to support research on three kinds of software supply
chains Ma (2018): technical dependency (traditional dependency-based package
reuse), copy-based reuse, and knowledge flows Zhuge (2002); Ghobadi (2015); Lyulina
and Jahanshahi (2021) (developers working on, and learning about, projects and then
using that knowledge in their work on other projects).

WoC'’s operationalization of copy-based supply chains is based on mapping blobs
(versions of the source code) to all commits and projects where they have been created.

This implies that copy is detected only if the entire file is copied intact without

3version V
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any modifications. Because of that, our dataset includes only the whole-file copying
activity. This also means that different versions of the originally same file will be
considered different objects since they are different blobs.

Specifically, WoC uses git object indexing via shal signature so that each
association has to store only the shal of the object (in this case blob), and the
actual content of each object is stored exactly once. When objects are extracted
from a repository, WoC associates all extracted commits with that repository (the so
called ¢2p map). Since a commit points to a tree and to its parent commit objects,
the remaining objects in a repository can be easily derived by traversing versions and
trees. WoC also computes the association between commits and blobs created by a
commit (new versions of existing files or entirely new files) and makes it available via
c2fbb map. The map lists all the instances where a blob corresponding to one of the
files in the repository changed or a new file was created. In the former case, the blob
corresponding to an earlier version of the file is also provided, making it possible to
trace back or forth for earlier or newer versions of a blob.

Commits have attributes, such as time of the commit and author of the commit
and these attributes can be accessed via c2dat map in WoC. A few more maps

provided by WoC are also used in creating this dataset.

2.3.2 Project Deforking

To understand reuse across the entirety of open source software, it is important
to identify distinct software projects. Git commits are based on a Merkle Tree
structure, uniquely identifying modified blobs, and therefore, shared commits between
repositories typically indicate forked repositories. As a distributed version control
system (VCS), Git facilitates cloning (via git clone or the GitHub fork button),
resulting in numerous repositories that serve as distributed copies of the same project.
While this feature enables distributed collaboration, it also leads to many clones of

the original repository Mockus et al. (2020).
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To differentiate copy-based reuse from forking, we use project deforking map p2 P
provided in WoC Mockus et al. (2020). Using community detection algorithms, this
map provides a clearer picture of distinct projects by linking forked repositories p to
a single deforked project P based on shared commits.

An advantage of this map over using the fork data from platforms like GitHub
is that WoC’s p2P map is based on shared commits, providing higher recall by not
missing forks that did not occur through GitHub’s forking option but rather through
cloning the repository. Additionally, forks and clones hosted on different platforms
cannot be traced easily, but the WoC map is platform-independent and does not have
this constraint. Moreover, some forks may diverge significantly from the original
repository but are still considered forks by hosting platforms. WoC’s deforking
algorithms use community detection via shared commits. If forks diverge substantially
via maintenance after forking, the community detection algorithm would recognize
them as distinct projects, which reduces false positives and increases precision.

Whenever we mention “project” in our paper, we are actually referring to a
“deforked project” as defined here. This ensures that our discussions about reuse are
based on unique instances of software development projects rather than duplicated

efforts through forks.

2.3.3 Identification of reused blobs

Despite the key relationships available in WoC, we have to resolve several critical
obstacles. We first need to identify the first time ¢,(P) each of the nearly 16B blobs
landed in each of the almost 108M projects. We aim to minimize memory use and be
able to run computations in parallel. First, we join c2fbb map? (that lists for each
commit all the blobs it creates) with c2dat map (to obtain the date and time of the
commit) and then with the ¢2P (which itself is the result of joining ¢2p with p2P

maps) map to identify all projects containing that commit. WoC has each of the

4see https://github.com/woc-hack/tutorial for more information about WoC map naming

convention
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three maps split into 128 partitions® requiring us to run a sequence of two Unix join
commands (first to join c2fbb and c2dat and then the result of that join with the ¢2P
map) on each of the 128 partitions in parallel. The result is a new ¢2Ptb (commit,
project, time, and blob) map stored in 128 partitions (¢’, P,t,b) : i = 0,...,127.
To create the timeline for each blob we need to sort all that data by blob, time,
and project. The list has hundreds of billions of rows (20B blobs often occurring in
multiple commits and commits sometimes residing in multiple projects). We thus
needed to break down the problem into smaller pieces to solve within a reasonable
time frame. Specifically, we first split each partition (¢, P,t,b) based on the blob
into 128 sub-partitions, thus obtaining 128x128 partitions resulting from the original
partitioning by commits and the secondary one by blobs (/. ¢, P, c") : 4,7 = 0,...,127.
We then sort each of the 128x128 files by blob, time, and project (using Unix sort
parameterized to handle extremely large files) and drop all but the first commit
creating the blob for each project®. In the next step we merge 128 commit-based
partitions for each blob-based partition using Unix sort with a merge option and drop
all but the first commit of the blob to a project. Resulting in 128 blob-based partitions
(b2tP map) (¥, t, P) : j = 0,...,127 where we have only blob, time, and the deforked
project that contain our desired timeline ¢,(P). Finally, the blob timelines are used to
identify instances of copying (t,(P,), ts(Py)) (or, in the terminology of WoC, Ptb2Pt
maps where the first project is originating” and the second project copied the blob
— the blob was created at a later time). To accomplish this we first create a list of
blob origination projects and times. A sweep over b2tP by keeping only the first
time and the project associated with each b and excluding blobs associated with

a single project® produces (V/,t,P,) : j = 0,...,127. We also store never reused

5Partitions are enumerated using the first seven bits of the shal representing the key — in this
case commit — in order to obtain partitions of similar size. Each partition is a file sorted by the
key and compressed.

6A blob is often copied within a repository.

"See section 2.5 for the limitations in identifying the originating project.

80ver 90% of the blobs belong to a single project, so excluding them reduces storage of the
relations created downstream.
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blobs (¥.,t,P,) : j = 0,...,127 (ones that are associated with only one project
as identified during the sweep mentioned above). (¥, ¢, P,) partitions containing
only originating project are then joined with (&’,¢, P) to obtain the cross-product
(W, to, Pyytg, Py) : j =0,...,127, P, # P;). Each of the resulting 128 partitions are
then split via project name?, into 128 sub-partitions and each sub-partition is then
sorted by the originating project: ((P:,t,, Py, tq,0’) : 4,5 =0,...,127), then merging
over blob-based partitions belonging to a single project-based partition. Resulting
Ptb2Pt map contains all instances of blob copying: (¢,(P!),t,(P;)) and is stored in
128 partitions ¢ = 0,...,127 with each workflow step described above capable of
being run as 128 parallel processes. The data flow digram of reuse identification is
shown in Figure 2.1.

The initial step was to pinpoint the first instance, denoted as ¢,(P), when each
of the approximately 16 billion blobs appeared in each of the almost 108 million
projects. To this goal, first the c2fbb map'® (which is the result of diff on a commit:
commit file, blob, old blob and lists all blobs created by each commit) was joined with
the c2dat map (full commit data) to obtain the date and time of each commit. The
result was then joined with the ¢2P map (commit to project) to identify all projects
containing that commit.

The result is a new ¢2btP map (commit to blob,, time, and Project). To create the
timeline for each blob, all that data was sorted by blob, time, and project resulting
in b2tP map (b, ¢, P) where we have only blob, time, and the deforked project that
contain our desired timeline t,(P).

Finally, the blob timelines'! were used to identify instances of reuse (t,(B,), ty(Py))

or Ptb2Pt map, where the first project is the originating project'? and the second

9We use the first seven bits of the name’s FNV digest Noll (2012) as it is faster and randomizes
better short strings than shal.

108ee https://github.com/woc-hack/tutorial for more information about WoC map naming
convention

11 All but the first commit time creating the blob for each project were dropped as a blob is often
reused within a repository.

12Gee section 2.5 for the limitations in identifying the originating project.
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project is the destination project of the reused blob, meaning the blob was created
at a later time in this project. This resulting Ptb2Pt map contains all instances of

blob reuse. The data flow of reuse identification is shown in Figure 2.1.

2.3.4 Time Complexity Analysis

To evaluate the complexity and time requirements of our methodology for identifying
reuse, we analyze the time complexity of each step and provide a benchmark for
execution time on a typical computer setup. The overall time complexity is dominated
by the sorting operations involved in processing the large maps. Data preparation
and joining involve merging the precalculated maps in WoC, namely the c2fbb, ¢2P,
and c2dat maps. Since these maps are already sorted and split into 128 partitions,
we can join them with a complexity of 128 x O(l + m + n), where [, m, and n
are the number of rows in the maps respectively. We then drop the commit hashes
and sort the joined b2tP map based on blob, time, and project, which is the most
computationally intensive step, with a complexity of O(nlogn), where n is the total
number of rows in the b2tP map. Identifying reuse instances, given that the data
is already sorted by blob, has a complexity of O(n), where n is the total number of
copy instances.

Using a high-performance workstation as a benchmark (8-core processor at 3.5
GHz, 128 GB RAM, 2 TB SSD), we calculate the execution time for each step.
Data preparation and joining, with a linear-time merge, primarily involve reading
and writing large files. With a sequential read/write speed of approximately 500
MB/s for SSDs, joining the maps (total size around 128 billion rows) is expected
to take roughly 1-2 hours. Sorting the created b2tP map, which requires external
sorting of about 74 billion rows, necessitates multiple passes over the data. Based on
empirical data, a modern external sorting algorithm with 8 cores can handle around
0.5 billion rows per hour. Hence, sorting this map would take approximately 148

hours. Identifying reuse instances, involving efficient 1/O operations, is estimated to
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take 4-6 hours. In total, the entire process is estimated to take approximately 153-156
hours, or about 6.5 days.

Detecting code reuse in finer granularity than blob-level, such as through syntax
tree parsing or text similarity techniques, would offer a more comprehensive view of
code reuse. However, these methods involve several computational challenges and
resource constraints, making them impractical for our study.

Parsing the abstract syntax tree (AST) for each file to detect structural similarities
involves several computational steps. First, each file must be parsed into its AST
representation, which itself is an O(n) operation where n is the total number of unique
blobs. For our dataset of 16 billion blobs, this parsing step alone would be extremely
resource-intensive. Following parsing, comparing each AST to identify potential reuse
instances would require pairwise comparisons. The pairwise comparison complexity
is O(n?), resulting in an infeasible O((16 x 10%)?) complexity.

Text similarity measures on the other hand, such as Levenshtein distance or cosine
similarity, involve comparing each blob’s contents with every other blob. These
methods typically operate with a complexity of O(n?) for each pair of files, again
resulting in an infeasible O((16 x 10°)?) complexity. Even with optimizations like
locality-sensitive hashing or other approximation techniques, the scale of the data
renders this approach impractical.

Given the significant computational complexity and resource requirements, de-
tecting code reuse at a finer granularity than blob-level is not feasible for our study.
Instead, we have chosen to focus on blob-level reuse detection, which provides a
practical and scalable solution. While this approach is limited to detecting exact
file copies, it ensures that the analysis remains within the bounds of available
computational resources and time constraints, thereby enabling a thorough and

efficient examination of code reuse in the OSS landscape.
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2.4 Dataset

The created tables are stored on WoC servers. Each line of this dataset includes the
originating repository (deforked repository), the timestamp of first commit including
the blob in originating project, blob shal, destination project (deforked repository)
and the timestamp of first commit including the blob in destination project, all

separated by semicolon.

format :

originating repo;timestamp;blob;
destination repo;timestamp

example:

MeigeJia_ ECE —364;1514098666;
010000001b502dcb0fc8e89d4£f854979c9350318 ;
HaoboChenl1887_Purdue;1598024605

This means blob 010000001b502dcb0fc8e89d4{854979c93503f8 was first seen in
MeigeJia ECE-364 repository at 1466402956 (Jun 20 2016) and was reused by
HaoboChen1887_Purdue at 1551632725 (Mar 03 2019). Slash symbols are substituted
with underscores in WoC repository naming convention. That is, MeigeJia ECE-364
means github.com/MeigeJia/ECE-364. Furthermore, the project is hosted on GitHub
unless the domain is mentioned at the beginning of the project name.

To get access to WoC infrastructure, the WoC registration form should be filled.
This form can be found on WoC tutorial page!®. There are no requirements for regis-
tration and any researcher can fill the form with a ssh key pair'*. Upon gaining access,
the data can be easily found and read at /da?_data/basemaps/gz/Ptb2PtFullVX.s
with X ranging from 0 to 127 based on the 7 bits in the first byte of the blob shal.
The ”V” in the name indicates that this dataset is based on WoC version V'*(the
latest at the time of this work).

Bhttps://github.com/woc—hack/tutorial
Yhttps://www.ssh.com/academy/ssh/public-key-authentication
15https ://bitbucket.com/swsc/overview
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2.5 Limitations

Blob-level reuse Our dataset is at entire blob reuse granularity and does not
capture the reuse of pieces of code that form only a part of the file. Thus blob-level
reuse (despite being common) does not represent the full extent of all code reuse.
Notably, different versions of the same file would have different blobs as even if
two versions differ by only one character, they still produce different file hashes (are
different blobs). Thus blob reuse is not the same as file reuse. File reuse is, however,
difficult to define precisely as it is not clear what files should be considered equivalent

in distinct projects.

Commit time The reuse timeline (and identifying the first occurrence) of a blob
is based on the commit timestamp. This time is not always accurate as it depends
on the user’s system time. We used suggestions by Flint et al. (2021a) and other
methods to eliminate incorrect or questionable timestamps. We also used version
history information to ensure time of parent commits do not postdate that of child

commits.

Originating repository The accuracy of origination estimates can be increased
by the completeness of data. Even if we assume that the WoC collection is complete,
some blobs may have been originated in a private repository and then copied to a
public repository, i.e., the originating repository in WoC may not be the actual creator

t16

of the blob. For example, a 3D cannon pack asset'® was committed by 38 projects

indexed by WoC. That asset, however, was created earlier in Unity Asset Store.

Copy instance A unique combination of blob, originating project and destination
project may not always reflect the actual copy pattern because some destination
projects may have copied the blob not from the originating project (e.g., for projects

O, A, and B in blob creation order, project B may copy either from project O or A).

https:/ /assetstore.unity.com/packages/3d /props/weapons /stylish-cannon-pack-174145
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Also, some blobs are not copied but are created independently in each repository, e.g,
an empty string, or a standard template automatically created by a common tool.
We use the list of such blobs provided by WoC Ma et al. (2019) to exclude them from
all our calculations.

As was described in each paragraph, we took all the necessary steps to minimize
the potential negative impact of these limitations and validated the curated data

extensively to ensure its reliability within the boundaries of limitations.
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Chapter 3

Beyond Dependencies

Disclosure Statement

A version of this chapter was originally published as Jahanshahi et al. (2024b):

Mahmoud Jahanshahi, David Reid, and Audris Mockus. 2025. Beyond
Dependencies: The Role of Copy-Based Reuse in Open Source Software
Development. In ACM Transactions on Software Engineering and Methodology
(TOSEM). Just Accepted (January 2025).

Available at: https://doi.org/10.1145/3715907

This material is included in accordance with ACM’s policies on thesis and
dissertation reuse. (C) 2025 Copyright held by the owner/author(s). Publication
rights licensed to ACM.

Replication package available at: https://zenodo.org/records/14743941

3.1 Introduction

In this chapter, our aim is to enable future research and tool development to increase
efficiency and reduce the risks of copy-based reuse. We seek a better understanding
of copy-based reuse by measuring its prevalence and identifying factors affecting the

propensity to reuse. To identify reused artifacts and trace their origins, our method
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exploits World of Code infrastructure. We begin with a set of theory-derived factors
related to the propensity to reuse, sample instances of different reuse types, and survey
developers to better understand their intentions. Our results indicate that copy-based
reuse is common, with many developers being aware of it when writing code. The
propensity for a file to be reused varies greatly among languages and between source
code and binary files, consistently decreasing over time. Files introduced by popular
projects are more likely to be reused, but at least half of reused resources originate
from “small” and “medium” projects. Developers had various reasons for reuse but
were generally positive about using a package manager.

Despite the sustained attention and potential benefits and risks associated with
reuse, the exact scale, prevalent practices, and possible negative impacts related to
OSS-wide reuse have not been thoroughly explored. This is primarily due to the
formidable task of tracking code throughout the entirety of OSS Jahanshahi and
Mockus (2024).

Gaining a more comprehensive understanding of reuse practices could guide
future research towards developing methods or tools that enhance productivity
while mitigating the inherent risks associated with reuse. Specifically, we aim to
quantify several aspects concerning the extent and nature of reuse in OSS, providing
information necessary to investigate approaches that support this common activity,
making it more efficient and safer.

We use a measurement framework created by Jahanshahi and Mockus (2024) that
tracks all versions of project artifacts, referred to as blobs!, across all repositories.

In this approach, the first time each blob is committed to a repository is identified.
The (repository, blob) tuples are then sorted based on the commit time of the first
appearance of that unique blob in the repository. The repository with the earliest
commit time is identified as the originating repository, and the person who made that

commit is recognized as the creator of the blob. Reuse instances are then identified

In alignment with the terminology used in the Git version control system, we use the term
“blob” to refer to a single version of a file.
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by pairing the originating repository with any subsequent repositories that commit
the same blob.

Our work investigates how much and what kind of the whole-file reuse happens
at the scale of OSS, with findings that could help guide future research and tool
development to support this common but potentially risky activity. First, we show
how the existing studies, by ignoring “small” and inactive projects, miss almost
half of the code reused even by the “largest” and most active projects. There is
a necessity for more in-depth study to fully comprehend how these abundant yet
unseen “dark matter” projects contribute to reuse activity. Second, we theorize
about and investigate empirically the properties of artifacts and originating projects
that influence the likelihood of file reuse, addressing a key question that previous
work, which has predominantly focused on copy detection techniques, has missed.
To investigate historic reuse trends, we also introduce a time-limited measure of
reuse. Our findings reveal several surprising patterns showing how copying varies
with the programming language, properties of a blob, and originating projects. These
insights could help prioritize and articulate further research and tool development that
supports the most common reuse patterns.

In summary we ask the following research questions:
RQ1 How extensive is copying in the entire OSS landscape?
RQ2 Is copy-based reuse limited to a particular group of projects?
RQ3 Do characteristics of the blob affect the probability of reuse?

RQ4 Do characteristics of the originating project affect the probability of reuse?

3.2 Social Contagion Theory

Reusing code is an instance of technology adoption. One of the key questions we

want to ask is what may affect the propensity of adopting (copying) a blob. Social

27



Contagion Theory (SCT) Christakis and Fowler (2013) is a widely used theory for
examining dynamic social networks and human behavior in the context of technology
adoption Angst et al. (2010); Samadi et al. (2016). In the field of software engineering,
it has been used to explain how developers select software packages Ma et al. (2020).

We are using SCT to theorize about the dynamics of code reuse by conceptualizing
it in terms of exposure, infectiousness, and susceptibility. SCT helps us frame our
research questions by providing a structured way to analyze how code reuse spreads
within the open source community. Specifically, we explore how developers become
aware of reusable code, the inherent qualities of the code that make it more likely to be
reused, and the characteristics of projects or developers that make them more likely to
adopt reusable code. These dimensions guide the formation of our research questions,
enabling us to systematically investigate the factors influencing reuse activity in open
source software. The key value of SCT in our case is to help articulate factors affecting

copy propensity via three dimensions:

1. Exposure. Exposure is an intuitive notion that in order to copy an artifact, you

first have to learn about and find it.

2. Infectiousness. Infectiousness is the property of the artifact that affects its

propensity to be reused.

3. Susceptibility. Susceptibility is the property of the destination project or
developer that reflects how much benefit they would (or believe they would)

derive by reusing the artifact.

First, for a blob (infectious agent) to be reused, a developer needs to become
aware of it. In other words, it needs to be exposed to the open source community
(population). Social coding platforms such as GitHub provide various crowd-sourced
signals of project popularity. Developers may consider these characteristics of project
popularity or health when choosing what resource to use Frakes and Terry (1996);

Lozano-Tello and Gémez-Pérez (2002). These considerations suggest that developers
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are more likely to be exposed to code in more popular or active projects. Therefore,
we used project properties as a proxy for the likelihood of awareness. This primarily
addresses RQ2 and RQ4 in this chapter.

The second concept of SCT, infectiousness, means that a highly virulent infectious
agent is more likely to spread. In our context, this can be measured by the
characteristics of the blob itself, corresponding to RQ3. Most of the literature on
reuse has primarily focused on this aspect of the reused resource.

The final concept in our theory is susceptibility, which refers to the vulnerability of
the target population to the infectious agent. In our case, this can be approximated
by the characteristics of the target project (or author) that reuses the blob. For
example, the use value, or how much the blob is needed in the project that copies it.
These characteristics are, by definition, highly specific to the target project, making
them more challenging to measure. We aim to shed more light on this aspect in

chapter 4.

3.3 Related Work and Contributions

While the benefits and risks associated with code reuse seem tangible, the extent and
types of reuse across the entirety of OSS remain unclear. To prioritize these risks and
benefits, and explore methods to minimize or maximize them respectively, we employ
the approach introduced in our previous work Jahanshahi and Mockus (2024). This
method allows us to track copy-based reuse on a scale commensurate with the vast
size of OSS. The scope of copying activity is not fully encompassed by previous studies
based on convenience samples, as we will illustrate in the results section.

We are not aware of any other curation system that operates at the level of a blob
or finer granularity, nor is there an easy way to determine the extent of OSS-wide copy-
based reuse at that level. Methods for identifying reuse, such as the one introduced
by Kawamitsu et al. (2014b), are designed to find reuse between specific input

projects and do not easily scale to detect reuse across all OSS repositories Jahanshahi
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and Mockus (2024). The methods we use to identify and characterize reuse could,
therefore, serve as a foundation for tools that expose this difficult-to-obtain yet
potentially important phenomenon Jahanshahi and Mockus (2024). We acknowledge
that the actual extent of reuse is most likely much higher than what we find at
blob-level granularity. Nevertheless, we believe the results we present will still be
insightful, especially as the lower bound for the extent of copy-based reuse activity
in the entirety of OSS.

We first differentiate copy-based reuse from related fields and then discuss our

contributions.

3.3.1 Related Research Areas

To comprehensively understand copy-based reuse, it is essential to discuss two
closely related fields: the clone detection and the clone-and-own practice. Following
discussion will focus on differentiating copy-based reuse from dependency-based reuse,
clone detection, and clone-and-own practices, situating these within the broader

context of code reuse literature.

Code Reuse Analysis

Code Reuse Analysis encompasses techniques and practices that aim to maximize
the efficiency and reliability of software development by leveraging existing code.
Techniques such as static analysis, dependency analysis, and repository mining help
identify reusable components within a codebase Koschke (2007). Through these
methods, code reuse analysis seeks to reduce redundancy and enhance maintainability.
Frakes and Kang (2005) show that systematic code reuse can significantly reduce

development time and costs while improving software quality.
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Clone Detection

Clone Detection is a technique within code reuse analysis for identifying similar
or identical code fragments in a codebase. This process involves using tools to
detect exact or slightly modified duplicates, which can then be refactored into
reusable components. Techniques range from textual and token-based methods to
more advanced semantic and abstract syntax tree (AST) analyses Roy and Cordy
(2007); Svajlenko and Roy (2014). These methods focus on identifying code clones
within constrained contexts, often limited to small code snippets within a few
projects Svajlenko and Roy (2015). Clone detection helps in managing redundancy
and maintaining code quality by highlighting areas where code can be simplified
and reused Roy and Cordy (2007). The effectiveness of clone detection tools has
been validated in various studies, showing significant improvements in software

maintainability Kapser and Godfrey (2008).

Clone and Own

Clone and Own is a practice where existing software components are copied and
modified to meet new requirements. This approach is often utilized in product
line engineering and situations where rapid development is important. Clone-
and-own allows developers to quickly adapt existing solutions but can lead to
maintenance challenges due to the proliferation of similar, independently maintained
code fragments Krueger (2001); Rubin and Chechik (2013). This practice, common
in open source development, involves significant modifications and independent
maintenance, often leading to divergent development paths German (2002); Blincoe
et al. (2016).

While clone detection focuses on technical identification of code snippets, the
clone-and-own practice highlights the importance of customization and independent
management of forked projects. As the clone-and-own practice involves both technical

customization and significant social factors, such as community engagement and
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governance models, understanding these aspects is important for managing forked
projects German (2002); Blincoe et al. (2016). Although clone-and-own supports
the purpose of code reuse by facilitating quick adaptation, it often results in code
duplication, complicating long-term maintenance. Research has shown that clone-
and-own is prevalent in practice due to its simplicity and effectiveness in the short

term Antoniol et al. (2004).

Copy-based Reuse

Copy-based reuse, a form of code reuse, involves copying existing code and potentially
modifying it for use in new contexts. This method allows for rapid development
but shares the maintenance challenges associated with clone-and-own, as duplicated
code must be managed across different parts of the software. In summary, code
reuse analysis encompasses techniques like clone detection to manage redundancy
and practices like clone-and-own to adapt existing code for new purposes. While
clone detection and code reuse analysis share the goal of improving code quality
and maintainability by identifying and managing redundancy, clone-and-own focuses
on rapid adaptation rather than efficient redundancy management, despite serving
a similar purpose in promoting reuse. Both copy-based reuse and clone detection
address code duplication but differ significantly in their methodologies and scopes.
Copy-based reuse research, as exemplified by our work, provides a broader, ecosystem-
level perspective, incorporating social aspects and the characteristics of entire
projects. In contrast, clone detection focuses on the technical identification of
code snippets within specific contexts, while the clone-and-own practice emphasizes

customization and independent maintenance of forked projects.

3.3.2 Contributions

Our contribution in this work has three aspects as follows.
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Accuracy

Our study leverages the World of Code (WoC) infrastructure to analyze reuse of nearly
the entire open source software landscape. This allows the capture of the instances
of copying that would be missed if only a subset of public repositories were to be
analyzed. In contrast, previous studies often focused on samples of mostly “popular”
repositories drawn from specific communities or subsets of programming languages.
They either have mostly concentrated on a specific community (e.g. Java language,
Android apps, etc.) Heinemann et al. (2011); Haefliger et al. (2008); Mockus (2007);
Hanna et al. (2012); Fischer et al. (2017); Sojer and Henkel (2010)or only sampled
from a single hosting platform (e.g. GitHub) Gharehyazie et al. (2017, 2019). This,
consequently, prevented identification of all inter-community or out-of-sample copies.

Even research with more comprehensive programming language coverage such as
study by Lopes et al. (2017) or studies by Hata et al. (2021d,b) analyze only a subset
of programming languages and additionally use convenience sampling methods by
excluding less active or “unimportant” repositories. As our results demonstrate, even
inactive and “small” projects appear to provide many of the artifacts reused in OSS,
even by the “largest” and most active projects.

Existing literature on code cloning primarily focuses on empirical studies, case
studies, and tool evaluations. Empirical studies typically analyze code clones within
specific projects or samples of open source software repositories. These datasets
are large but not exhaustive of the entire OSS ecosystem. For example, studies
by Juergens et al. (2009); Roy et al. (2009) examine hundreds to thousands of
files or repositories, providing valuable but partial insights. Case studies offer
in-depth analysis of cloning practices within individual projects or organizations,
giving detailed context but limiting the scale to the specific cases under study.
Tool evaluations involve benchmark studies of clone detection tools, evaluating
their performance on curated datasets. While these studies contribute important

information about tool effectiveness, they do not cover the entire OSS ecosystem.
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Unlike studies that rely on selective sampling, our analysis encompasses nearly the
entire open source software ecosystem, providing a broad and necessary foundation for
understanding code reuse. This is a fundamental requirement for accurately tracking
the origin of files within entire OSS, as it helps to uncover accurate trends and patterns
that would be biased in analyses based on the samples of such data, offering a more

accurate understanding of reuse practices.

Methodology and Focus

Copy-based reuse has not been explored as thoroughly as the dependency-based reuse
(e.g., Cox (2019); Frakes and Succi (2001); Ossher et al. (2010)).

For example, Mili et al. (1995) have shown that dependency-based reuse can lead
to more sustainable software architectures by promoting component-based design and
reducing redundancy. Additionally, Brown and Wallnau (1998) demonstrated that
by leveraging well-defined interfaces and reusable libraries, dependency-based reuse
can significantly improve software maintainability and scalability. Nevertheless, very
few, if any, similar analyses exist regarding copy-based reuse. Copy-based reuse is
potentially no less important, but is a much less understood form of reuse Jahanshahi
and Mockus (2024). Most studies in copy-based reuse domain focus on clone detection
tools and techniques Roy et al. (2009); Ain et al. (2019); Jiang et al. (2007); Hanna
et al. (2012); White et al. (2016) rather than on the characteristics of entire source
code files that possibly make reuse more or less likely.

Furthermore, almost all studies we reviewed focus solely on source code reuse,
whereas we track all artifacts, whether they are code or other reusable development
resources Jahanshahi and Mockus (2024). By using the World of Code research
infrastructure, which encompasses nearly the entire OSS ecosystem, we identified
and analyzed copying activity at this scale for the very first time.

In contrast to clone detection, which primarily involves identifying similar code
snippets within specific directories or domains Inoue et al. (2021); Svajlenko et al.

(2013), our research addresses the broader context of entire files and diverse artifacts
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across the OSS ecosystem, providing a more comprehensive understanding of reuse.
Our method bridges the clone detection and clone-and-own approaches by detecting
all instances of reuse, whether they are kept without any changes or modified after
reuse, thereby encompassing both the technical and managerial aspects of code reuse.

In existing clone detection literature, several methods are employed to identify
code clones. These methods include text-based, token-based, tree-based, and graph-
based techniques. Text-based methods detect clones by comparing raw text, which is
straightforward but can be less accurate due to variations in formatting. Token-based
methods improve on this by converting code into tokens and detecting similarities at
this more abstract level, enhancing accuracy but still being susceptible to variations
in code structure. Tree-based methods parse the code into abstract syntax trees
(ASTs) and identify clones by comparing these trees, providing a more structured
and semantically meaningful detection. Graph-based methods further abstract code
into control flow or data flow graphs, allowing for the detection of more complex and
semantic clones Roy et al. (2009).

The clone and own literature primarily employs these detection methods to
understand the broader landscape of code cloning. For example, Juergens et al. (2009)
utilized a combination of these techniques to analyze cloning practices in software
projects. These methods are effective in identifying different types of clones, such as
exact, parameterized, and semantic clones, but they often focus on similarities and
patterns rather than exact matches.

In contrast, our research employs a method focused on identifying reuse at the
blob-level, specifically detecting if the exact versions of code have been copied. While
it misses instances where a single code snippet has been copied, this approach does
not rely on abstractions or patterns. This method involves obtaining hashes for
all versions of the entire open source software ecosystem to detect identical code
segments, ensuring that every version of code is tracked to its origin. This exhaustive
and detailed approach allows for a comprehensive analysis of copy-based supply chains

at the OSS level. Since software supply chains form a network over the entire OSS, it
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is not feasible to study them by sampling projects: representative samples from large
graphs are notoriously difficult to obtain (see, e.g., Leskovec and Faloutsos (2006)).
In addition to ensuring that the entire file has been copied and committed, our
method easily scales to the entire OSS ecosystem as it avoids the need to look for
similarities among tens of billions of versions by utilizing hashes. Traditional clone
detection techniques would need to be substantially modified to work at this scale.

We discuss some of the potential approaches in Section 8.3.1.

Influencing Factors and Social Aspects

Our study explores how the characteristics of OSS projects influence the propensity
for their artifacts to be reused, examining their social aspects. Previously, the focus
has been primarily on the desired functionality and the code itself Srinivas et al.
(2014); Geisterfer and Ghosh (2006), but we also investigate the social aspects of this
phenomenon in the open source community.

The literature on clone detection and our research both explore the social aspects
of code reuse, but they do so from different perspectives and with varying emphases
on social and technical factors. Existing literature on clone detection primarily
focuses on the technical aspects of identifying code clones and understanding their
impact on software maintenance and quality. For instance, studies by Juergens
et al. (2009); Roy and Cordy (2007) delve into the reasons for code cloning,
such as improving productivity, learning, and avoiding reimplementation of similar
functionalities. These studies often highlight the technical motivations behind code
cloning, such as reusability and rapid prototyping, but they also touch upon social
aspects like collaborative development and knowledge sharing within teams. However,
the primary emphasis remains on the technical detection and management of code
clones.

In contrast, our research takes a broader view by examining how the characteristics
of open source software projects influence the propensity for their artifacts to be

reused. This includes a detailed analysis of both social and technical factors.

36



Our study explores the diverse motivations and implications of reuse in the OSS
community, considering aspects such as project size, community engagement, and the
collaborative nature of OSS development. By doing so, we highlight the importance
of social dynamics in code reuse, including factors like community contributions, the
reputation of projects, and the collaborative environment that fosters code sharing
and reuse.

By examining these social and technical factors, our study provides a more
comprehensive understanding of the motivations behind code reuse in the OSS
community. We draw parallels to other factors influencing copy-based reuse, such
as the ease of access to code, the open and collaborative nature of OSS projects, and
the role of community support and documentation. This broader perspective allows us
to highlight the diverse and sometimes conflicting motivations for code reuse, ranging

from technical efficiency to social recognition and collaborative learning.

3.4 Methodology

To make the subsequent discussion precise, we first introduce a few definitions. The
time when each unique blob b was first committed to each project P is denoted as
tpy(P). The first repository P,(b) = ArgMinp t,(P) is referred to as the originating
repository for b (and the first author as the creator). Then project pairs consisting
of a project with the originating commit and the destination project with one of the
subsequent commits producing the same blob (P,(b), P;(b)) are identified as reuse
instances. The reuse propensity (the likelihood that a blob will be copied to at least
one other project) is then modeled based on the type of the file represented by the

blob and the activity and popularity characteristics of the originating projects.

37



3.4.1 RQ1l: How extensive is copying in the entire OSS

landscape?

To investigate how widespread whole-file copying in OSS actually is, we first want
to establish a baseline: what fraction of blobs were ever reused, and if reused, to
how many downstream projects? Specifically, in RQ1, we are showing the number
of blobs, originating as well as destination projects (deforked), and copy instances
across the entire OSS ecosystem. These numbers are not estimates but the actual

numbers calculated over the complete dataset.

3.4.2 RQ2: Is copy-based reuse limited to a particular group
of projects?

One may argue that the results in RQ1 are not necessarily important, as only “small”
projects may reuse code in a copy-based manner. To see if this is actually the case,

we randomly sampled 5 million reuse instances from each of the 128 files into which
the data was divided, based on the first two bytes of the hash of blobs. This resulted
in a total of 640 million instances for the analysis. This approach ensured that our
sample was distributed across the entire dataset, capturing a diverse range of copy
instances. The sample size of 640 million instances constitutes approximately 2.67%
of the entire dataset. Although this is a small fraction of the data, it is sufficiently
large to ensure the statistical reliability and representativeness of our analysis, as the
large absolute size of the sample guarantees its statistical reliability according to the
Central Limit Theorem.

Before going further, we need to define the qualitative and, more importantly,
subjective terms of “small” and “big” projects with quantitative and justified
measures. Crowston and Howison (2005) and Koch and Schneider (2002) have shown
that project activity, as measured by commit frequency, is a strong indicator of project

health and sustainability. Additionally, the use of stars as a metric is well-supported
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in the literature, as they represent a form of user endorsement and are correlated
with project visibility and perceived quality Ray et al. (2014). We choose these two
metrics because both the number of commits and the number of stars are indicators
of a project’s activity and popularity. Commits reflect the ongoing development and
maintenance efforts, which are important for the sustainability and evolution of a
project. Stars, on the other hand, reflect the community’s interest and endorsement,
indicating the project’s visibility and influence. These metrics are widely used in
empirical software engineering research to evaluate the health and impact of open
source projects Jiang et al. (2007); Borges et al. (2016).

We define projects with over 100 commits and 10 stars as “big” projects. The
mean and 3rd quantile values for the number of commits in our dataset are 46 and 12,
respectively. This aligns with established practices in the literature where thresholds
are often set significantly above average to isolate highly active projects. By setting
the threshold at more than double the mean, we ensure that only the top-performing
projects are classified as big. Similarly, the threshold of 10 stars is set based on the
mean of 2.33 and 3rd quantile value of 0 for stars. This indicates that the majority of
projects receive few or no stars, reflecting their popularity and community engagement
levels. By selecting projects with at least 10 stars, we focus on those with significant
community recognition, capturing less than 1% of the dataset but representing the
most influential projects.

The thresholds chosen for “small” group, on the other hand, are projects with no
stars and fewer than 10 commits to ensure the projects are indeed small and inactive.
This approach ensures that the small group, comprising 62% of projects, includes
those with minimal activity and engagement, consistent with findings by Gousios
and Spinellis (2012) that a large proportion of open source projects are relatively
inactive. We consider all the other projects that do not fall into either the big or
small categories as the “medium” group. The medium group captures the middle
ground, excluding only the extremes, thus providing a balanced representation of the

majority of active projects.
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Using this taxonomy, we counted the number of unique blobs involved in these
copy instances between groups. It should be mentioned that a blob can have several
downstream projects that do not necessarily fall into the same group. Therefore, we
considered the biggest downstream project for our analysis purposes. For example,
if a blob originated in a medium project and was reused by both a big and a small
project, we count it in the “medium to big” category.

Considering the biggest downstream project for each unique blob ensures that the
most significant reuse instances are captured. This approach is supported by research
indicating that the impact of code reuse is often determined by the size and activity
of the downstream projects utilizing the code Mockus (2007); Weiss and Lai (1999).
By focusing on the largest downstream project, we ensure that our analysis reflects

the most substantial and influential reuse cases of a particular blob.

3.4.3 RQ3: Do characteristics of the blob affect the proba-
bility of reuse?

The third part of our research question (RQ1) focuses on the properties of reused
artifacts. To address this, we obtained a large random sample of blobs comprising
1/128 of all blobs.

We have to point out that unlike RQ2, where we randomly sampled copy instances
(meaning all the blobs involved were reused at least once), here we are sampling from
the b2tP map that includes all blobs, whether they have been reused or not. Our
dataset is divided into 128 files based on the first two bytes of the blob hash. Hash
functions, by design, distribute input data evenly across the output space. The use
of hash functions to divide data ensures a uniform distribution across the resultant
files Mitzenmacher and Upfal (2017). By using one of these 128 files as our sample,
and given the vast size of the dataset, we ensure that it is an unbiased representation
of the entire dataset and that this sample size is sufficient to achieve high statistical

power and accuracy in our analyses.
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We then employed a logistic regression model with the response variable being
one for reused blobs and zero for non-reused blobs.

Logistic regression is a robust statistical method used to model the probability
of a binary outcome based on one or more predictor variables. It is widely used in
empirical software engineering to understand factors influencing software development
practices Hosmer Jr et al. (2013). By using logistic regression, we can quantify the
effect of various predictors on the likelihood of a blob being reused.

In this research question, we are concerned with infectiousness based on our Social
Contagion Theory. Specifically, we are looking for properties of artifacts that affect
their propensity to be reused.

The first predictor in our model is the programming language of the blob. Different
programming languages are associated with distinct package managers, development
environments, and community cultures, which can influence reuse practices Bissyandé
et al. (2013). For example, the ease of dependency management in languages
like Python (via pip) or JavaScript (via NPM) might facilitate reuse more than
in languages with less mature package management systems. Thus, including the
programming language as a predictor helps capture these contextual differences. We
anticipate that source code for programming languages such as C, which lack package
managers, is likely to be copied more frequently than source code for languages with
sophisticated package managers, such as JavaScript.

The second predictor is the time of blob creation. This factor helps account
for temporal dynamics by indicating the period during which a blob was created,
reflecting different reuse practices over time. We hypothesize that older blobs were
more likely to be reused due to fewer available reusable artifacts in the OSS landscape
at the time. However, the time of creation inherently includes the effect of a blob’s
availability duration (t,(P;) — t»(P,)), meaning older blobs have had more time to be
discovered and reused. Previous research by Weiss and Lai (1999) indicates that the

age and visibility of code artifacts influence their reuse.
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To isolate and examine the influence of the creation period without the confound-
ing effect of longer availability, we introduce the concept of time-limited reuse. By
focusing on copies occurring within specific time intervals after the blob’s creation,
we remove the advantage of longer visibility and can better assess how the creation
period itself influences reuse?.

We evaluated both one-year and two-year intervals and found similar results. By
evaluating both intervals and finding similar results, we enhance the robustness of
our conclusions. To maintain conciseness and avoid repetition, we report the findings
for the two-year interval. Reporting the two-year interval results provides a balance
between sufficient observation time for reuse events and the practical need for concise
reporting. Consequently, we excluded blobs created after May 1, 2020, ensuring that
all blobs had at least two years to be potentially reused, providing a consistent time
frame for analysis Weller and Kinder-Kurlanda (2016). This approach ensures that
our findings are not skewed by varying availability periods.

The third predictor is whether the blob is a source code or a binary. We
hypothesize that binaries, identified by their git treatment or file extensions like tar,
jpeg, or zip, may exhibit different reuse patterns compared to source code. We expect
that binary files, such as images, might be copied more often because they are easy to
understand and reuse but difficult to recreate. Unlike other types of files, developers
cannot easily extract specific parts or functionalities from binary files. That is, source
code blobs are directly reusable and modifiable, whereas binaries might be reused as-is
without modification. This distinction is important as it affects the ease or necessity
of reuse Gabel and Su (2010). Therefore, when it comes to whole-file reuse, which is
our definition of reuse in this work, we anticipated that binary blobs are more likely
to be copied.

The last factor we hypothesize might affect the propensity of a blob to be reused

is its size. The size of a blob can influence its reuse for several reasons. Larger blobs

2This definition is used solely for the purposes of our regression model and subsequent analysis.
It is not applied in RQ1, RQ2
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may contain more functionality, making them more attractive for reuse. Conversely,
smaller blobs may be simpler to integrate into existing projects. Previous research by
Capiluppi et al. (2003) and Mockus (2007) has indicated that the size of code artifacts
can impact their maintainability, comprehensibility, and ultimately their reuse.

To investigate whether a difference exists between the sizes of copied and non-
copied blobs, we exclude binary blobs from the analysis. The size of binary blobs is
not comparable to the size of source code blobs due to their fundamentally different
nature. Binary blobs often include compiled code, media files, or compressed archives,
which do not provide a meaningful comparison to plain text source code in terms of
size. Because of these differences, we did not incorporate blob size as a predictor
in our logistic regression model. Including binary blobs could skew the results and
lead to misleading conclusions. Instead, we perform a t-test to compare the sizes
of copied blobs and non-copied blobs. The t-test is a robust statistical method
used to determine whether there is a significant difference between the means of
two groups Student (1908). By applying the t-test, we can rigorously assess whether

blob size influences the likelihood of reuse.

3.4.4 RQ4: Do characteristics of the originating project
affect the probability of reuse?

The fourth part of RQ1 concerns the chances of finding or being aware of a blob
approximated by signals at the project level. This is the exposure factor in the
Social Contagion Theory. To conduct this study, we use WoC’s MongoDB project
database to randomly sample one million projects, comprising nearly 1% of all
projects indexed by WoC, to achieve a balance between statistical validity and
computational feasibility. A sample size of one million is large enough to provide
a representative snapshot of the entire population.

We then search the reuse instances (t,(P,), t,(P;)) in our Ptb2Pt map to determine

if the project originated at least one reused blob. A logistic regression model with
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the response variable being one if the project has introduced at least one reused
blob (and zero otherwise) is then constructed. The predictors in the project-level
model include the number of commits, blobs, authors, forks, earliest commit time,
the activity duration of the project (the time between the first and the last commit
in that project), the binary ratio (the ratio of binary blobs to total blobs), and the
programming language. We also use the number of GitHub stars for each project as
a predictor. This data in WoC (number of stars) is sourced from GHTorrent Gousios
(2013).

The choice of these predictors for our model is based on the current literature on

relevant project properties.

o Number of Commits. Number of commits is a strong indicator of project activity
and maintenance. Koch and Schneider (2002) show that projects with higher
commit frequencies tend to have more active development and are more likely

to be reused due to their perceived reliability and continuous improvement.

e Number of Blobs. Number of blobs represents the volume of content and
potential reusable components. Larger projects with more blobs are likely to
offer more opportunities for reuse Mockus (2007). It can also indicate the
project’s complexity and modularity. Projects with more files may be more

modular and provide more reusable components.

o Number of Authors. Number of authors reflects the collaborative nature of
a project. Projects with more contributors tend to have diverse expertise,
which supports innovation and decentralized communication, improving the
development process Crowston and Howison (2005), and potentially increasing

the likelihood of reuse.

o Number of Forks. Number of forks is a proxy for the project’s popularity and
community engagement. Projects with more forks are often viewed as valuable

and trustworthy Tsay et al. (2014), increasing their reuse potential.
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e Farliest Commit Time and the Activity Duration. Earliest commit time and
the activity duration provide insights into the project’s maturity and stability.
Older and long-active projects are more likely to be well-established and

reused Gamalielsson and Lundell (2014).

o GitHub Stars. GitHub stars is a form of social endorsement, indicating
community approval and interest. Projects with more stars are likely to
be considered high-quality and reliable, making them more attractive for

reuse Borges et al. (2016).

e Binary Ratio. Binary ratio, defined as the ratio of binary blobs to total blobs,
can impact the reuse potential of a project. Binary blobs, such as compiled
code or media files, often indicate pre-packaged functionalities or resources that
are ready for use. A higher binary ratio may suggest that a project provides

ready-to-use components, which can facilitate reuse Mockus (2007).

Regarding language assignment, at the blob-level, WoC’s b2sl map was used for
blob language detection based on file extensions. This method is straightforward and
effective for identifying the programming languages of individual blobs. Nevertheless,
assigning a primary language to a project is more complex due to the use of multiple
languages in most projects. WoC’s MongoDB project database provides counts of
files with each language extension, allowing us to pick the most frequent extension
as the project’s main language. For our study, we considered only a subset of blobs,
specifically originating blobs (blobs first seen in OSS within the project), and assumed
the most common language among these blobs as the project’s primary language.
This approach aligns with the practice of determining the dominant language based

on primary contributions Vasilescu et al. (2015).
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3.5 Results & Discussions

The numbers presented in this section are derived from version U? of WoC, which

was the most recent version available at the time of this analysis.

3.5.1 RQ1l: How extensive is copying in the entire OSS

landscape?

We identified nearly 24 billion copy instances (unique tuples containing the blob and
originating and destination projects) encompassing more than 1 billion distinct blobs.
With approximately 16 billion blobs in the entire OSS landscape (as approximated
by WoC), 6.9% of the blobs have been reused at least once, and each reused blob is

copied to an average of 24 other projects (see Table 3.1).

Table 3.1: Basic Statistics of Reuse Instances

Count Total %
Reuse instances 23,914,332,270 - -
Blobs 1,084,211,945 15,698,467,337  6.9%

Originating projects 31,706,416 107,936,842  29.4%
Destination projects 86,483,266 107,936,842  80.1%

Nearly 32 million projects (about 30% of the nearly 108 million deforked OSS
projects indexed by WoC) originated at least one reused blob. Over 86 million projects
have copied these blobs, meaning 80% of OSS projects have reused blobs from another

project at least once.

3https://bitbucket.com/swsc/overview
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RQ1 Key Findings

1. We identified nearly 24 billion copy instances encompassing more than 1

billion distinct blobs.
2. 6.9% of all the blobs in the entire OSS have been reused at least once.

3. About 30% of all OSS projects originated at least one reused blob, and

80% of projects have reused blobs at least once.

The extensive reuse observed highlights the efficiency gains in OSS development,
as projects benefit from existing code to accelerate development cycles and reduce
costs. The widespread reuse also raises security concerns, as vulnerabilities in
copied code can propagate across numerous projects. This necessitates improved
vulnerability detection and management practices to ensure the integrity of reused
code. Additionally, License violations due to improper code reuse can lead to legal
challenges and compliance issues, underscoring the importance of clear licensing and
adherence to open source policies. Furthermore, our identification of blob-level reuse,
which only accounts for exact matches and not slight modifications, suggests that
the actual extent of code reuse might be even higher. The findings advocate for the
development of better tools and infrastructure to manage copy-based reuse, including
automated detection of security and legal risks, and tools for maintaining code quality

in reused components.

3.5.2 RQ2: Is copy-based reuse limited to a particular group
of projects?

The numbers already demonstrate the prevalence of copy-based reuse in the OSS
community. To understand how this reuse activity is distributed across different
groups of projects, we constructed a contingency table as explained in the methods

section. Each blob’s originating project is unique and falls into one of three categories
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(big, medium, and small). However, downstream projects are not unique and we
consider the largest downstream project for each blob.

Our analysis revealed nearly 112 million unique blobs reused in our 640 million
sample copy instances, with nearly 13 million of these blobs reused by at least one
big project (see Table 3.2). This indicates that more than 11% of blobs are reused at
least once by at least one big project, showing that copy-based reuse is not limited

to small projects but is a widespread phenomenon in the OSS community.

Table 3.2: Blob Counts in Reuse Sample

Biggest Downstream Projects Total
Big Medium Small ‘
Upstream Big 6,748,621 22,273,811 6,515,122 35,537,554 (31.8%)
Projects Medium 5,348,651 36,434,732 14,552,148 56,335,531 (50.3%)
Small 691,644 10,151,838 9,231,618 20,075,100 (17.9%)
Total 12,788,916 (11.4%) 68,860,381 (61.5%) 30,298,888 (27.1%) ‘ 111,948,185

However, it is still unclear if these reused blobs are predominantly introduced by
big projects. If this were the case, one could presume that these blobs are mostly of
good quality and not error-prone, making the costs of managing and tracking code
propagation through such reuse potentially outweigh the benefits. Sampling copy
instances revealed that big projects are responsible for only about 30% of reused blobs,
while the remaining 70% are introduced by medium and small projects. Specifically,
nearly 18% of these blobs are introduced by small projects, with the remaining 50%
coming from medium projects. Furthermore, even for big projects, almost 50%* of the
blobs they reuse originate from medium and small projects (see Table 3.2). Therefore,
it is evident that not only big projects serve as upstream sources for copy-based reuse.
Indeed, many blobs introduced by medium and small projects are being widely reused.

Even if all widely reused blobs were exclusively introduced by big projects, copy-
based reuse still requires management for several reasons. For example, security
vulnerabilities may continue to spread even after the main project has fixed the

issue Reid et al. (2022).

4(5,348,651 + 691,644) /12,788,916
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RQ2 Key Findings

1. 32% of reused blobs originate from big projects, which comprise 1% of
the total projects.

2. 18% of reused blobs originate from small projects, which make up 62% of
the total projects.

3. 50% of reused blobs originate from medium projects, which represent 37%

of the total projects.

4. Nearly 50% of blobs reused by big projects originate from medium and

small projects, highlighting significant cross-category reuse.

Our findings demonstrate that a non-negligible portion of reused code in the
OSS community comes from medium and small projects, challenging the assumption
that high-quality code predominantly originates from large projects. This implies a
diverse quality spectrum in reused code and underscores the importance of ensuring
quality and security across all project sizes, as vulnerabilities in smaller projects can
propagate widely. Tools that can track the origin and usage of blobs are essential to
ensure timely updates and fixes across the OSS ecosystem, mitigating risks associated
with vulnerabilities and outdated code. The widespread nature of code reuse across
projects of all sizes, emphasizes the need for quality assurance, effective management,
and community collaboration to maintain the health and sustainability of the OSS

landscape.

3.5.3 RQ3: Do characteristics of the blob affect the proba-
bility of reuse?

In this section, we first demonstrate the reuse trends, followed by the logistic
regression model predicting the probability of a blob being reused. Additionally, we

present the reuse propensity per language and show the difference in blob size between
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reused and non-reused blobs. Finally, we discuss a case study using JavaScript as an

example.

Reuse Trends

As explained in the methods section, we use a 2-year-limited copying definition in the
RQ3 and RQ4 models and results. This means that we consider a blob reused only if
it has been reused within 2 years of its creation. With this definition, 7.5% of blobs
have been reused. Figure 3.1a shows the total counts of new blobs and copied blobs
for each quarter since the year 2000°. Both counts exhibit rapid growth, although
the growth in new blob creation appears to outpace that of copying. To investigate
this difference, Figure 3.1b shows the reuse propensity measured via the reuse ratio
(reused blobs divided by total blobs), confirming that new blob creation has outpaced
copied blobs since 2006 when the ratio began to decline.
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Figure 3.1: Quarterly Reuse Trends

Logistic Regression Model

We expect the nature of the blob to affect its propensity to be reused. To test this
hypothesis, we use a logistic regression model where the response variable is set to

one if the blob has been copied at least once (i.e., has been committed in at least two

5The number of projects and blobs was much smaller before 2000.
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projects) within two years of its creation, and zero otherwise. We used WoC definition
of the programming language associated with each blob and categorized less common
programming languages in the sample as “other”. The descriptive statistics of the

variables are presented in Table 3.3.

Table 3.3: Blob-level Model - Descriptive Statistics

Variable Statistics

Reused Yes: 6,419,388 (7.5%) No: 78,136,705 (92.5%)

Language JavaScript Java C (Other)
(Counts) 11,122,849 4,579,458 3,460,733 65,393,053
Creation Time 5% Median Mean 95%
(Date) 7/29/2012 2/7/2018 5/28/2017 2/28 /2020
Binary Yes: 18,516,721 (21.8%) No: 66,039,372 (78.2%)

The sample dataset is predominantly composed of blobs written in JavaScript,
with significant counts also in Java and C. Additionally, the distribution of blob
creation time is provided, showing a median date of February 7, 2018. Furthermore,
a notable proportion of the blobs, 21.8%, are binary.

The results of our logistic regression model are shown in Tables 3.4 and 3.5. The
model shows that the coefficients for all predictors are statistically significant with
p-values less than 0.0001, meaning they impact the probability of a blob being reused
(see Table 3.4).

The ANOVA table (Table 3.5) provides insights into the significance of different
variables. We see that all the predictors have p-value equal to zero, meaning that the
null hypothesis® can be rejected. The null deviance is 45,438,151, which represents the
deviance of a model with only the intercept. Adding the Binary variable reduces the
deviance by 124,114, indicating its strong influence on reuse likelihood. The Creation

Time variable further reduces the deviance by 830,322, highlighting its importance

6HO: The reduced model (without the predictor) provides a fit to the data that is not significantly
worse than the full model (with the predictor). This suggests that the predictor does not significantly
improve the model’s fit.
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Table 3.4: Blob-level Model - Coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -18.0293 0.0186 -967.07 <2x10°'°
Binary 0.4775 0.0010  460.16 <2 x 1071¢
Creation Time 0.8108 0.0010 82834 <2x10°'°
C 0.7142 0.0017 426.32 <2 x 10716
C+# -0.1277 0.0033  -38.15 <2x 10716
Go 0.3095 0.0065 47.74 <2x 10716
JavaScript -0.0832 0.0015  -56.21 <2 x 10716
Kotlin -0.5606 0.0133  -42.02 <2x10°'°
ObjectiveC 0.0810 0.0066 12.30 <2 x 10716
Python -0.0327 0.0030  -10.97 <2 x 10716
R 0.4070 0.0083 49.22 <2x 10716
Rust 0.0879 0.0095 9.30 <2x 10716
Scala -0.6168 0.0123  -50.21 <2x 10°1¢
TypeScript 0.1827 0.0046 39.38 <2x10°16
Java 0.0794 0.0019 42,37 <2x10°16
PHP 0.3561 0.0024 151.14 <2 x 10716
Perl 0.7664 0.0082 92.95 <2x 10716
Ruby -0.4782 0.0044 -108.58 <2 x 1071¢

in predicting reuse. The “Language” variable also reduces the deviance by 230,614.
Although these reductions might seem small relative to the null deviance, they are

statistically significant given the large sample size and the high degrees of freedom

involved.
Table 3.5: Blob-level Model - ANOVA Table
Df Deviance Resid. Df Resid. Dev p.value
NULL 84,556,092 45,438,151.00
Binary 1 124,114.20 84,556,091 45,314,036.80 < 2 x 10716
Creation Time 1 830,322.63 84,556,090 44,483,714.17 <2 x 10716
Language 15 230,614.17 84,556,075 44,253,100.00 < 2 x 10716

To assess the direction and the size of predictor effects, we need to go further.
In a logistic regression model, a positive coefficient estimate indicates that as the
predictor variable increases, the odds of the outcome occurring increase, while a

negative coefficient estimate indicates that as the predictor variable increases, the
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odds of the outcome occurring decrease. Since the coefficients represent the change
in the log-odds of the outcome for a one-unit increase in the predictor, we transform
these coefficients to odds ratios by exponentiating them to interpret the actual impact
of each predictor. The odds ratio indicates how the odds of the outcome change with
a one-unit increase in the predictor. The results are shown in Figure 3.2. This graph
displays the odds ratios for various predictors in the logistic regression model at the
blob level. An odds ratio greater than 1 indicates an increase in the likelihood of

reuse, while an odds ratio less than 1 indicates a decrease.
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Figure 3.2: Blob-level Model - Logistic Regression Odds Ratios

The creation time has the highest positive coefficient. The time variable in the
model represents the time elapsed from the blob’s creation until current time, meaning
that older blobs have higher time values. The positive coefficient indicates that newer
blobs (with smaller time values) are less likely to be reused.

This is not because they have been visible for a shorter duration (as we controlled

for this with the time-bound definition of reuse), but likely due to other factors we
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hypothesized, such as fewer artifacts being available for reuse at the time of their
creation.

Binary blobs show a significant increase in reuse likelihood with an odds ratio
of 1.63. Given this confirmed effect, we calculated the reuse propensity for binary
and non-binary blobs separately. The results showed that 9.5% of binary blobs were
reused, compared to 7.0% of non-binary blobs in our sample.

Different programming languages show varied impacts on reuse likelihood. Blobs
written in Perl, C, R, PHP, Go, TypeScript, Objective-C, Java, and Rust are more
likely to be reused, with Perl showing the highest odds ratio. In contrast, blobs
written in Kotlin, Scala, Ruby, C#, JavaScript, and Python are less likely to be
reused, with Kotlin and Scala showing the most significant negative coefficients. This
variability suggests that certain languages, perhaps due to their prevalence or specific

use cases, are more conducive to code reuse.

Per-Language Propensity

Following our logistic regression results, which demonstrated that programming
language is a statistically significant factor in reuse probability of a blob, we calculated
the propensity to copy for each programming language, measured as the percentage
of reused blobs within that language (see Table 3.6). The results show that blobs
written in Perl have the highest propensity to be reused at 18.5%, indicating a strong
tendency for code reuse among Perl developers. Conversely, Kotlin has the lowest
propensity at 3.0%, suggesting minimal code reuse in this language. Languages such
as C (15.2%) and PHP (9.9%) also show high reuse rates, while Python (6.4%),
JavaScript (5.5%), and TypeScript (6.3%) have lower rates. Other languages like
Java (7.8%), Go (7.9%), and R (9.8%) fall in the middle range, with moderate reuse

rates.
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Table 3.6: Blob-level - Propensity to Reuse

Language Ratio | Language Ratio | Language Ratio
C 15.2% | ObjectiveC ~ 8.4% | TypeScript  6.3%
C+# 6.0% | Python 6.4% | Java 7.8%
Go 79% | R 9.8% | PHP 9.9%
JavaScript  5.5% | Rust 6.7% | Perl 18.5%
Kotlin 3.0% | Scala 3.8% | Ruby 5.1%

JavaScript Example

The role of programming language in reuse activity might have several underlying
reasons, as previously discussed. One such reason is the presence of a reliable package
manager. If true, improvements in a package manager should reduce the propensity
to reuse an artifact. To examine this, we analyzed the timeline of the reuse ratio for
JavaScript, shown in Figure 3.3. The figure indicates a sharper decrease in the slope
around 2010, the year the NPM package manager was introduced. This downward
trend continues until mid-2013, when the copying activity rate drops to around 7%
and then levels off. This pattern supports the hypothesis that the introduction and
adoption of NPM significantly reduced code reuse through copying.

However, it is important to note that this is just an illustration, and further
research is needed to understand this phenomenon fully. Our current study was
not focused on this aspect, so we did not conduct an in-depth analysis. Additional
investigations with more data points and comparisons with other languages that have
introduced similar improvements in their package management systems are necessary

to confirm that the observed effect is not coincidental or specific to JavaScript alone.

Blob Size

The final predictor we hypothesized to affect the reuse probability of a blob was its
size. To investigate whether there is a significant difference between the sizes of copied

and non-copied blobs, we conducted a t-test comparing these sizes. Our analysis
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Figure 3.3: Reused Blobs to Total Generated Blobs Ratio Trend in JavaScript

revealed a significant difference (p-value j 2.2e-16), indicating that, on average, copied
blobs are smaller than non-copied blobs.

However, the effect varies by language. Specifically, per-language t-tests reveal
that copied blobs are smaller in languages like JavaScript and TypeScript, larger in
languages such as C and Python, and remain unchanged in Objective-C, as detailed
in Table 3.7.

For example, in JavaScript, the t-value is -59.9, suggesting that copied blobs are
significantly smaller, while in C, the t-value is 195.9, indicating that copied blobs are
larger. Similar patterns are observed in other languages, with TypeScript showing
a t-value of -35.9 (smaller copied blobs) and Python a t-value of -5.8 (also smaller
copied blobs). Conversely, languages like Java (t-value 120.7) and PHP (t-value 28.6)
show that copied blobs tend to be larger.

This variation highlights that the relationship between blob size and reuse

propensity is complex and influenced by language-specific factors. While our findings
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Table 3.7: Size Difference between Reused and non-Reused Blobs
(Positive t value means larger reused blobs.)

Language t value p-value Language t value p-value

C 1959 < 2x 1071 | Rust -7.8 <2x10716
CH# 125  <2x 10716 | Scala 9.1 <2x10716
Go 15.5 <2 x 1071 | TypeScript  -35.9 <2x 10716
JavaScript -59.9 < 2x 10716 | Java 120.7 <2x 10716
Kotlin -145  <2x10°' | PHP 28.6 <2x10716
ObjectiveC 0.7 0.430298 | Perl 5.8 <2x10716
Python -5.8 <2 x 1071 | Ruby 249 <2x 10716
R -7.6 <2 x 1071 | Other 23649  <2x 10716

demonstrate a general trend of smaller copied blobs, the differing patterns across

languages suggest that other underlying factors may be at play.
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RQ3 Key Findings

1. The reuse ratio is decreasing over time.
2. 7.5% of blobs have been reused within two years of creation.

3. Older blobs, when controlling for the confounding effect of increased

visibility, are more likely to be reused.
4. Binary blobs are 63% more likely to be reused.

5. Programming languages significantly impact reuse likelihood. Blobs
written in languages like Perl, C, R, PHP, Go, TypeScript, Objective-
C, Java, and Rust are more likely to be reused, while those written in
Kotlin, Scala, Ruby, C#, JavaScript, and Python are less likely to be

reused.

6. The reuse ratio timeline for JavaScript shows a notable decrease in slope

around the year the NPM package manager was introduced.

7. Copied blobs are generally smaller than non-copied blobs, but this is
not consistent across different languages. The size difference varies by
language, with reused blobs in C, Java, PHP, Go, C+#, Scala, Perl, and
Objective-C being larger than non-reused blobs, while in JavaScript,

TypeScript, Ruby, Kotlin, Rust, R, and Python, the reused blobs are

smaller than non-reused blobs.

The higher reuse propensity among binary blobs suggests that binaries are
inherently more reusable, likely due to their compiled nature, which allows easy
integration across projects. The lower reuse likelihood of newer blobs indicates a
potential issue with the integration and acceptance of recent contributions, possibly
due to rapid technological advancements and shifts in development practices. The

significant impact of programming languages on reuse likelihood highlights the
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importance of language-specific tools and ecosystems. Languages with higher reuse
rates, such as Perl and C, benefit from mature ecosystems, while newer or niche
languages like Kotlin and Scala show lower reuse rates, potentially due to smaller
communities. The decline in JavaScript code reuse post-NPM introduction suggests
that improved package management can reduce the need for direct code copying,
promoting more modular and maintainable codebases.

Regarding blob size, the general trend indicates that smaller code artifacts are
more reusable, likely due to their simplicity and ease of integration. However, this
trend varies significantly across different programming languages. For example, in
languages like JavaScript and TypeScript, copied blobs tend to be smaller, supporting
the idea of writing concise and modular code to enhance reusability. In contrast, in
languages like C and Python, copied blobs are often larger, suggesting that the nature
and use cases of these languages might necessitate larger reusable components. This
variation underscores the importance of understanding language-specific factors when

considering code reuse management strategies.

3.5.4 RQ4: Do characteristics of the originating project
affect the probability of reuse?

In this section, we first present the logistic regression model. We then demonstrate
the per-language reuse propensity and compare it to blob-level results. Finally, we

analyze binary blob reuse.

Logistic Regression Model

We applied a logistic regression model to determine the likelihood of a project
introducing at least one reused blob. The response variable is binary: 1 if the
project has introduced a reused blob, 0 otherwise. Descriptive statistics for the
model variables are presented in Table 3.8. Consistent with blob-level data, the

most frequent languages in our sample are JavaScript and Java.
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Table 3.8: Project-level Model - Descriptive Statistics

Variable Description Statistics
Reused Project has at least 1 reused blob  Yes: 205,140 (33.7%) No: 403,195 (66.3%)

5% Median Mean 95%
Blobs Number of generated blobs 1 15 162.7 397
Binary Binary blobs to total blobs ratio 0 0 0.1 0.6
Commits  Number of commit 1 5 57.0 84
Authors ~ Number of authors 1 1 2.5 3
Forks Number of forks 0 0 1.5 1
Stars Number of GitHub stars 0 0 34 2
Time Earliest commit time 7/18/2013 3/26/2018 9/15/2017 3/3/2020
Activity ~ Total months project was active 1 1 2.5 8
Language JavaScript Java Python PHP C (Other)
(Counts) 86,065 43,172 40,503 24,659 22,258 391,678

Spearman’s correlation analysis, suitable for the observed heavily skewed distri-
butions, is presented in Table 3.9. The number of commits shows a high correlation
with two other predictors: activity time (0.68) and the number of blobs (0.67).
These high correlations indicate redundancy, as the number of commits does not
add significant information beyond what is already captured by activity time and the
number of blobs. This redundancy can lead to multicollinearity, potentially distorting
the model’s coefficients and reducing interpretability. Consequently, we remove the
number of commits from the model, simplifying it without sacrificing explanatory

power. All other correlations are below 0.52, which are not concerning.

Table 3.9: Project-level Model - Spearman’s Correlations Between Predictors

Blobs Binary Commits Authors Forks Stars Time Activity

Blobs 1.00 0.46 0.67 0.34 0.22 0.22 0.09 0.52
Binary - 1.00 0.18 0.12 0.06 0.05 0.02 0.14
Commits - - 1.00 0.45 0.27  0.26  0.05 0.68
Authors - - - 1.00 0.32 0.22  0.05 0.38
Forks - - - - 1.00 0.48  0.14 0.28
Stars - - - - - 1.00  0.13 0.28
Time - - - - - - 1.00 0.05
Activity - - - - - - - 1.00

The results for the project-level logistic regression model are shown in Tables 3.10

and 3.11.
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All the variables in the model have p-values less than 0.05, indicating that they
are statistically significant in predicting the likelihood of a project introducing reused
blobs (see Table 3.10). This demonstrates strong evidence against the null hypothesis,
suggesting that these variables do have an effect on reuse.

Table 3.10: Project-level Model - Coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.79 0.16 -30.01  <2x1071°
Blobs 0.61 0.00 22894 <2x10°16
Binary 0.77 0.02 40.09 <2x10716
Authors 0.09 0.01 8.24 <2x10716
Forks 0.31 0.01 27.72  <2x 10716
Stars 0.06 0.01 7.19 6.61 x 10713
Time 0.10 0.01 1200 <2x10716
Activity 0.07 0.01 1048 <2x10°1'
C -0.33 0.02 -19.60 <2 x 10716
C# -0.30 0.02 -15.74 <2 x 10716
Go -0.29 0.04 -7.70 1.33x 107
JavaScript 0.21 0.01 2258 <2x10°16
Kotlin -0.23 0.05 -4.30 1.75 x 107°
ObjectiveC -0.13 0.03 -3.63 0.000288

Python -0.19 0.01 -14.78 <2 x 10716
R -0.27 0.05 -5.93 3.04 x 107°
Rust -0.48 0.07 -6.65  2.87 x 10~
Scala -0.27 0.07 -3.79 0.000153

TypeScript 0.88 0.03 34.57  <2x10°16
Java -0.25 0.01 22090 < 2x 10716
PHP 0.29 0.01 1959 <2x10°1'
Perl -0.31 0.10 -3.20 0.001395

Ruby 0.63 0.02 3318 < 2x107'6

Examining the ANOVA results (Table 3.11) provides further insight into the
impact and significance of these predictors.

We see that all the predictors have p-value equal to zero, meaning that the null
hypothesis can be rejected.

The deviance values in the ANOVA table indicate the reduction in model deviance
when each predictor is included. For example, adding the number of blobs to the

model reduces the deviance by 131,219.53, a substantial reduction that underscores its
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important role in the model. These results confirm the importance of these predictors

in explaining the variability in the likelihood of reuse.

Table 3.11: Project-level Model - ANOVA Table

Df Deviance Resid. Df Resid. Dev p.value

NULL 608,334 777,660.48

Blobs 1 131,219.53 608,333 646,440.95 <2 x 10716
Binary 1 662.94 608,332 645,778.01 ~<2x 1071
Authors 1 926.69 608,331 644,851.32 <2x 10716
Forks 1 2,084.02 608,330 642,767.30 <2 x 10716
Stars 1 63.77 608,329 642,703.53  1.44 x 1071°
Time 1 156.98 608,328 642,546.54 =<2 x 10716
Activity 1 139.31 608,327 642,407.24 <2x 10716

Language 15  5,178.20 608,312 637,229.03 < 2x 1071

To understand the size and direction of the impacts, we look at the odds ratios
inferred from the logistic regression coefficients. The odds ratio is calculated as the
exponential of the coefficient. An odds ratio greater than 1 indicates a positive impact,
while an odds ratio less than 1 indicates a negative impact. The results are shown in
Figure 3.4.

The logistic regression analysis shows that several predictors significantly impact
the likelihood of a project having a reused blob. TypeScript, Binary, Ruby, and
Blobs have the strongest positive effects, indicating that increases in these variables
substantially raise the odds of a project being reused. Other positive predictors
include Forks, PHP, JavaScript, Time, Authors, Activity, and Stars, which also
increase the likelihood, though to a lesser extent. Conversely, predictors like Rust, C,
Perl, C#, Go, Scala, R, Java, Kotlin, Python, and Objective-C negatively impact the
odds, suggesting that increases in these variables decrease the likelihood of a project
introducing a reused blob.

When interpreting the time variable, it is important to note that since the earliest
commit timestamp is represented as a number, we calculated the time elapsed from
the earliest commit to the current date for better interpretability. A larger time

value indicates an older earliest commit. The model shows that time has a positive
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Figure 3.4: Project-level Model - Logistic Regression Odds Ratios

coefficient, suggesting that the older the earliest commit, the higher the probability
of introducing reused blobs. This result could be influenced by two factors. First, at
the blob-level model, we already observed that older blobs have a higher probability
of being reused. Additionally, while the time-bound definition of reuse controls for
the confounding effect of longer visibility at the blob level, it does not account for
the longer visibility of the project itself. Therefore, the observed result might also be
affected by the project’s age, which implies longer visibility, even though the blob is

reused within two years of its creation.

Per-Language Propensity

The project-level model highlights the significance of programming languages in the
likelihood of a project introducing a reused blob. To explore this further, we calculated
the percentage of projects in each language that have introduced reused blobs. From

our previous analysis (RQ1), we know that approximately 29% of projects introduced
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at least one reused blob. When using the time-bound definition of copying, this ratio
increased to 33% in our sample. The results for each language are shown in Table
3.12.

Table 3.12: Percentage of Projects Introducing at Least One Reused Blob

Languages Ratio | Language Ratio | Language Ratio
C 33.2% | ObjectiveC  40.0% | TypeScript 62.3%
C# 37.0% | Python 30.5% | Java 36.2%
Go 31.3% | R 28.5% | PHP 46.4%
JavaScript  41.2% | Rust 31.5% | Perl 29.9%
Kotlin 40.0% | Scala 36.0% | Ruby 51.2%

The ratio of projects that have introduced reused blobs varies significantly across
different programming languages, offering new insights compared to the blob-level
analysis. For example, projects dominated by TypeScript have the highest probability
(62%) of introducing at least one reused blob. This finding is particularly interesting
because, at the blob level, the propensity to copy in TypeScript was lower than
average. This discrepancy suggests that TypeScript projects, acting as upstream in
the language’s supply chain, are less centralized. Developers in this language seem
more inclined to incorporate code from various, possibly unknown, projects.

Other languages also show distinct patterns. For instance, Ruby projects have
a high probability (51%) of reusing blobs, whereas Python projects have a lower
probability (30.5%). This variation indicates that the likelihood of code reuse
is strongly influenced by the primary language of the project, reflecting different
practices and community norms across languages. These insights emphasize the
importance of considering programming language when studying code reuse patterns
in software projects.

To ensure these results are comparable to blob-level analysis, we calculated the
copied blob ratio (copied blobs to total blobs) for each project and took the average
of this ratio for projects in each language. An important difference here with the

blob-level propensity is that at the blob level, language assignment was based on the
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file extension of each blob, with binary blobs categorized as “Other”. In this project-
level analysis, the language of a blob is determined by the predominant language
of the project it belongs to. For example, a Python-written blob in a C-dominated
project is counted as a C blob. Similarly, binary blobs are assigned the language of
the dominant language in their respective projects. The results of this new definition

are shown in Table 3.13.

Table 3.13: Project-level - Propensity to Reuse

Language Ratio | Language Ratio | Language Ratio
C 15.4% | ObjectiveC ~ 9.5% | TypeScript  5.6%
C+# 4.7% | Python 7.3% | Java 5.8%
Go 6.7% | R 7.2% | PHP 9.5%
JavaScript  8.8% | Rust 5.1% | Perl 21.2%
Kotlin 3.4% | Scala 3.5% | Ruby 5.3%

The propensity to copy varies when using this project-level definition compared
to the blob-level definition (see Table 3.6).

For example, the propensity to copy in JavaScript-dominated projects is higher
than for JavaScript blobs in general (8.8% vs. 5.5%). This indicates a greater
likelihood of reuse within JavaScript projects compared to individual JavaScript
blobs from various projects. This could be attributed to the modularity and
strong reuse culture in the JavaScript ecosystem, where libraries and frameworks
are frequently shared and integrated. JavaScript projects often incorporate multiple
languages, such as HTML and CSS for web development or server-side languages for
backend functionality, enhancing reuse through shared components. The evolution
of JavaScript projects, involving various tools and libraries, also contributes to the
higher reuse rate within the project context.

In Perl-dominated projects, the propensity to reuse is higher than for Perl blobs
in general (21.2% vs. 18.5%). This suggests that blobs within Perl projects are
more likely to be reused compared to individual Perl blobs from different projects.
Perl’s strong culture of code reuse and sharing, exemplified by the Comprehensive

Perl Archive Network (CPAN), encourages the use and distribution of reusable code

65



modules. Perl projects often include a wide range of scripts and utilities shared across
different applications, enhancing reuse. Furthermore, Perl’s use in scripting, text
processing, and system administration often requires the reuse of common patterns
and libraries, contributing to the higher reuse rate within projects.

Conversely, R-dominated projects show a lower propensity to reuse compared to
R blobs in general (7.2% vs. 9.8%). This implies that individual R blobs are more
likely to be reused than blobs within R-dominated projects. R is primarily used
for statistical computing and data analysis, where specific scripts and functions are
reused across different analyses. However, R projects are often tailored to specific
datasets and analyses, resulting in lower overall reuse within the project context.
The specialized nature of many R projects, with unique data processing and analysis
pipelines, limits reuse compared to individual reusable components like functions and
libraries.

Java-dominated projects exhibit a lower propensity to reuse compared to Java
blobs in general (5.8% vs. 7.8%). This indicates that individual Java blobs are
more likely to be reused than blobs within Java-dominated projects. Java is widely
used across various domains, and reusable components like libraries and frameworks
are common across different projects. However, Java projects tend to be large and
complex, with specific architectures and dependencies that may limit cross-project
reuse. The high degree of customization and specificity in Java enterprise applications
reduces the reuse rate within the project context compared to the reuse of individual
Java blobs or libraries.

These analyses reflect the differing dynamics of code reuse in various programming
ecosystems. Understanding these differences can help improve strategies for fostering
code reuse and optimizing software development practices across different languages

and project contexts.
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Binary Blob Analysis

Although previous analyses indicated that binary blobs are more likely to be reused,
we aimed to investigate whether this propensity varies across projects dominated by
different programming languages. At the blob level, it was not feasible to ascertain
the programming language of a binary blob. However, at the project level, such
analysis becomes possible. Therefore, we examined the reused binary blob ratio (the
percentage of reused binary blobs to total reused blobs) within each language and
compared it to the binary blob ratio (the percentage of binary blobs to total blobs)
within the same language, utilizing a t-test to identify any significant differences.

Consistent with the blob-level analysis, the reused binary blob ratio exceeds
the general binary blob ratio across all programming languages, indicating a higher
likelihood of reuse for binary blobs. This observation raises questions about language-
specific differences in binary blob reuse. Specifically, we hypothesize that binary blobs
are more frequently reused in certain languages compared to others. In other words,
we want to know if identifying a reused binary blob allows us to infer that it is more
likely to originate from projects written in particular languages.

Our findings confirm this hypothesis, as the proportion of reused binary blobs
varies significantly among different programming languages. Nevertheless, we
hypothesize that at least some of this difference stems from the general difference
in binary blob ratios in different languages and is not limited to reuse. Our statistical
tests reveal that the binary blob ratios indeed differ significantly across languages.
Consequently, the ratio of reused binary blobs also exhibits significant variation
among different languages, suggesting that this difference does not necessarily mean
varying binary reuse practices among them.

We want to determine if the higher number of reused binary blobs in a certain
language is solely due to the general prevalence of binary blobs in that language, or
if some languages tend to reuse more binary blobs. To control for this confounding

effect, we normalize the binary blob reuse ratio based on the total binary blob ratio.
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Given the binary blobs ratio br in a project (binary blobs over total blobs), we defined
the reused binary ratio cbr (binary reused blobs to total reused blobs) to binary ratio
br metric. This metric (cbr/br) averaged 4.104 for all the projects in our sample.
By using a linear regression with the project’s primary language as a predictor, we

obtained the results shown in Table 3.147.

_cbr cbe/ce

™ be/c

m: normalized binary reuse metric
cbr: copied binary ratio

br: binary ratio

cbe: copied binary count

cc: copied count

be: binary count

c: total count

Table 3.14: Reused Binary Blobs to Binary Blobs Metric

Language Metric  p-value Language Metric p-value
C 3.33 0.810722 | Rust 6.06  0.422024
C# 4.92 0.025270 | Scala 5.38  0.545028
Go 5.73 0.173372 | TypeScript  5.17  0.063922
JavaScript 704 <2x107 | Java 491  0.000497
Kotlin 5.42 0.306698 | PHP 449  0.035326
ObjectiveC ~ 2.17 0.217673 | Perl 3.32  0.975449
Python 2.19 0.005547 | Ruby 3.51 0.951277
R 2.65 0.614773

Our analysis reveals that the reused binary blobs to binary blobs metric varies

across programming languages. Notably, C#, JavaScript, Python, Java, and PHP

"The complete coefficients and regression ANOVA tables are available in the online appendix.
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exhibit statistically significant differences (p-value j 0.05). In particular, JavaScript
projects demonstrate a higher tendency to reuse binary blobs, while Python projects
show a lower tendency. This suggests that in JavaScript-dominated projects, reusing
binary blobs is likely more efficient and cost-effective than reusing code. Conversely,

Python projects might benefit more from reusing code rather than binary blobs.

RQ4 Key Findings

1. Project properties significantly impact the probability of their blobs
being reused, with binary ratio, number of blobs, forks, authors, activity

duration, and stars having a positive impact.
2. Older projects are more likely to have introduced reused blobs.

3. Blobs residing in projects dominated by different programming languages
have varying probabilities of reuse, with TypeScript, Ruby, PHP, and
JavaScript having higher probabilities, and Rust, C, Perl, C#, Go, Scala,
R, Java, Kotlin, Python, and Objective-C having lower probabilities.

4. On average, 33.7% of projects have introduced at least one reused
blob, but this percentage varies significantly between languages, with
TypeScript (62.3%) and Ruby (51.2%) having the highest propensity,
and R (28.5%) and Perl (29.9%) the lowest.

5. The tendency to reuse binary blobs is much higher in JavaScript projects,

while Python projects show a lower tendency.

The project-level analysis reveals that various factors significantly influence the
likelihood of code reuse in open source software projects. Projects with more blobs,
binary blob ratio, and longer activity tend to exhibit higher reuse rates. This aligns
with our hypothesis that project health, activity, and popularity signals play an

important role in promoting reuse.
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The variation in reuse likelihood across different programming languages under-
scores the influence of language-specific ecosystems and practices, consistent with
blob-level results. For instance, TypeScript and Ruby projects show the highest
propensity for reuse, which may be due to their robust ecosystems and strong
community practices that encourage code sharing and reuse. Conversely, languages
like Python and Perl have lower reuse rates, suggesting different reuse dynamics
and possibly a need for improved tools and practices to foster reuse. However, the
impact between the blob’s language and the language of the project it resides in
differs. This suggests that the underlying factors behind these differences are not just
technical aspects of the languages and their tools, but also their community culture
and practices.

The significant reuse of binary blobs, particularly in languages like JavaScript,
indicates that binary artifacts are valuable assets in software projects. This might be
due to the efficiency and ease of integrating precompiled binaries compared to source
code. However, the lower reuse rate of binary blobs in Python suggests that this
language’s ecosystem favors source code reuse, which could be due to its dynamic
nature and the extensive use of interpreted scripts. These findings have important
implications for the development and support of tools that facilitate reuse in different
programming languages. For languages like JavaScript, where binary blob reuse is
prevalent, enhancing asset libraries could be beneficial. In contrast, for languages like
Python, where code reuse is more advantageous, improving code package managers
would be more appropriate. This differentiation underscores the necessity for tailored
support tools to optimize reuse practices in various programming environments.

These findings highlight the impact of project context on reuse patterns and
suggest that different definitions and granularity levels can yield varying insights

into code reuse behaviors.
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3.6 Limitations

3.6.1 Internal Validity
Commit Time

The identification of the first occurrence and consequently building the reuse timeline
of a blob is based on the commit timestamp. This time is not necessarily accurate as
it depends on the user’s system time. The dataset we utilized followed suggestions
by Flint et al. (2021b) and other methods to eliminate incorrect or questionable
timestamps. This increases the reliability of our reuse timeline. We also used version
history information to ensure the time of parent commits does not postdate that of
child commits Jahanshahi and Mockus (2024). This adds an extra layer of consistency

and validation, further enhancing the accuracy of our data.

Originating Project

The accuracy of origination estimates is highly reliant on the completeness of data.
Even if we assume that the World of Code (WoC) collection is exhaustive, it is possible
that some blobs may have originated in a private repository before being copied into a
public one. This means that the originating repository in WoC may not be the actual
creator of the blob. This scenario suggests that even with a comprehensive dataset,
there could be instances of code reuse that remain undetected, adding another layer of
complexity to understanding the full extent of reuse across open source projects. For
example, a 3D cannon pack asset® was committed by 38 projects indexed by WoC.
However, that asset was originally created earlier in the Unity Asset Store Jahanshahi
and Mockus (2024).

By utilizing the extensive WoC collection, we provide a broad and detailed analysis
of code reuse, capturing a significant portion of open source activity even if some

instances of private-to-public transitions are missed. Additionally, the examples we

8https://assetstore.unity.com/packages/3d/props/weapons/
stylish-cannon-pack-174145
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identified, such as the 3D cannon pack asset, highlight the practical implications and
real-world relevance of our findings, demonstrating the robustness of our analysis
despite potential data gaps. Our approach addresses the inherent challenges of
tracking code origination and reuse, offering a framework that can be refined and

expanded in future research to further improve accuracy and comprehensiveness.

Copy Instance

A unique combination of blob, originating project, and destination project might
not always accurately represent the actual pattern of reuse. This is because some
destination projects could potentially reuse the blob from a different source other
than the originating project. For instance, if we have three projects—A, B, and C—in
order of blob creation, project C might copy from either project A or B. Additionally,
certain blobs are not reused but are created independently in each repository, such
as an empty string or a standard template automatically generated by a common
tool Jahanshahi and Mockus (2024). These blobs are excluded by using the list
provided by WoC Ma et al. (2019).

Despite this limitation, our results remain significant. By recognizing the
potential for indirect reuse and independently created blobs, we provide a more
nuanced understanding of the reuse landscape, accounting for the complexity of code
propagation across projects. Excluding independently created blobs and utilizing
WoC’s comprehensive list ensures that our analysis focuses on genuine reuse instances,

enhancing the reliability of our findings.

3.6.2 External Validity
Blob-level Reuse

Our work focuses solely on the reuse of entire blobs, deliberately excluding the reuse
of partial code segments within files. While blob-level reuse is common, it only covers

a subset of the broader code reuse landscape. Blob-level reuse is more relevant to
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scenarios where larger code blocks, consisting of entire files or even groups of files, are
reused compared to statement or function-level reuse. This means that our results
might have an implicit bias towards programming languages or ecosystems that rely
more heavily on complete files, potentially overlooking reuse practices prevalent in
languages that favor modular or snippet-based reuse.

This limitation also implies that different versions of the same file, even if they
differ by just one character, generate different blobs due to distinct file hashes.
Consequently, blob reuse does not equate to file reuse. Defining file reuse is challenging
because it is difficult to determine what constitutes equivalence between files in
different projects Jahanshahi and Mockus (2024). This could be a potential reason
for the higher level of reuse in binary blobs, as they are relatively harder to modify.

Despite these limitations, our results remain significant for several reasons:

e Prevalent Pattern: By concentrating on entire blob reuse, we address a
prevalent and impactful pattern in software development. This allows us to

provide valuable insights into a substantial portion of code reuse practices.

e Clarity and Precision: Analyzing entire blobs offers a clear and precise
method for identifying reuse, avoiding the ambiguity and complexity associated
with defining partial file reuse. This clarity enhances the reliability of our

findings.

e Efficiency and Scalability: Blob-level analysis is computationally efficient
and scalable, enabling us to process large datasets and draw meaningful
conclusions from extensive data. This scalability is important for comprehensive

empirical studies.

e Foundation for Future Research: Our work lays the groundwork for future
studies that can build on our findings to explore partial file reuse and other
nuanced aspects of code reuse. By addressing a well-defined scope, we provide

a solid foundation for subsequent research.
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In summary, while our focus on blob reuse introduces certain limitations, it
also provides clear, scalable, and impactful insights into code reuse practices. This
targeted approach enables us to contribute valuable findings to the field, despite the
inherent complexities of defining and analyzing file reuse. Although blob-level reuse
is less granular than statement or method-level reuse, findings at the blob level would
also apply to sub-blob-level analysis, which should adjust for blob-level reuse. Future
studies are needed to investigate the extent to which different levels and types of code

reuse overlap or differ.

3.7 Conclusions

In conclusion, our study highlights the non-negligible role of copy-based reuse in
open source software development. By leveraging the extensive World of Code
(WoC) dataset, we provided a comprehensive analysis of code reuse, revealing that
a substantial portion of open source projects engage in this practice. Our findings
indicate that 6.9% of all blobs in OSS have been reused at least once, and 80% of
projects have reused blobs from another project. This widespread reuse emphasizes
the efficiency gains in OSS development but also raises concerns about security and
legal compliance.

The variation in reuse patterns across programming languages underscores the
influence of language-specific ecosystems and practices. Moreover, the higher
propensity for binary blob reuse suggests a need for tailored tools to support
different types of reuse. Future research should focus on improving the accuracy
and comprehensiveness of reuse detection and exploring the impact of partial file
reuse.

The survey results further enrich our understanding of reuse practices. We found
that many creators intended their resources for reuse, indicating a collaborative
mindset among developers. Reusers generally found the reused blobs helpful. Despite

these positive perceptions, reusers showed relatively low concern about potential bugs
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and changes in the original files. This low level of concern could suggest either a high
level of trust in the quality of the reused code or a lack of awareness of the associated
risks. Additionally, the survey revealed a moderate interest in using package managers
to handle changes to reused files. This indicates potential demand for tools that can
streamline and manage code reuse more effectively.

Overall, our work provides insights into the patterns and factors affecting
code reuse, advocating for better management and support tools to enhance the
sustainability and security of OSS. By addressing the identified risks and leveraging
the collaborative nature of the OSS community, we can improve code reuse practices

and outcomes.
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Chapter 4

Survey

Disclosure Statement
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Replication package available at: https://zenodo.org/records/14743941

4.1 Introduction

In this chapter, we want to answer this question: How do developers perceive and
engage with copy-based reuse? To do so, we obtain responses from 374 developers
about the code they have reused or originated. Most respondents write code with an

explicit expectation that it will be reused. Developers reuse code for several reasons
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and are not concerned with bugs in the reused code, but they are willing to use
package managers for reused code if such tools were provided. Overall, we find that
despite its questionable reputation due to inherent risks, code copying is common,
useful, and many developers keep it in mind when writing code.

The research question in this chapter aims to triangulate the quantitative results
from previous chapter and understand how developers perceive and engage with copy-
based reuse. While quantitative research often focuses on metrics such as frequency,
intensity, or duration of behavior, qualitative methods are better suited to explore
the beliefs, values, and motives underlying these behaviors Castleberry and Nolen
(2018).

Using a questionnaire for triangulation allows us to obtain self-reported data,
which can confirm or challenge the quantitative findings. This method helps identify
any discrepancies and provides a deeper understanding of participant behavior Denzin
(2017). In our study, the questionnaire included a direct question (“Did you create
or copy this file?”) to gather self-reported data on whether participants copied the
blob, offering a direct measure to compare against the quantitative results.

Additionally, based on the Social Contagion Theory (SCT), we hypothesize that
the characteristics of the destination project and/or author influence reuse activity.
However, treating all reusers the same could be problematic, as developers may have
fundamentally different reasons for reuse. Motivations for reuse can vary widely based
on individual needs, project requirements, and perceived benefits from the reused
code Mockus (2007); Frakes and Fox (1995). Our primary focus was to understand
these motivations to categorize different types of reuse, potentially providing more
insight into measuring susceptibility for future research. By categorizing motivations,
we aim to identify distinct patterns and factors influencing reuse behavior, facilitating
the development of targeted strategies to enhance code reuse practices. This approach
aligns with qualitative research methods that seek to explore complex phenomena

through detailed, contextualized analysis Creswell and Creswell (2017).
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4.2 Methodology

To gain insights into the motivations behind copy-based reuse, we conducted an
online survey targeting both the authors of commits introducing reused blobs and
the authors of commits in the originating repositories. The survey aimed to capture

a range of experiences and perceptions related to copy-based reuse!.

4.2.1 Survey Content and Questions

The survey included questions about the nature of the file, why it was needed,
how it was chosen, and whether developers would use tools to manage reused files.
General questions about the repositories and developers’ expertise were also included.
Notably, the question about the reason for needing the file was open-ended to capture
unbiased and detailed responses about the motivations for reuse.

All the questions were optional, except for the very first one, which asked if the
respondent had created or reused the file. We chose not to directly ask why did
developers choose to copy to avoid provoking legal and ethical concerns about copy-
based reuse. For this reason, instead, we asked: “Why was this file needed? How did
it help your project?”2.

Furthermore, we asked developers if the project in which the file resides was
intended to be used by other people. Understanding whether creators intend for
their resources to be reused helps assess the cultural and strategic aspects of OSS
development. If a significant portion of creators design their code with reuse in mind,
it indicates a collaborative ecosystem where resources are shared and built upon.

We also asked a series of Likert scale (on a scale from 1 to 5) questions as follows.

e “To what extent did this file help you?” - Gauging how helpful creators

and reusers find the reused blobs provides quantitative data on the perceived

IThe survey and its procedure was approved by our institutional review board, ensuring that it
adhered to ethical guidelines for research involving human subjects.
2See online appendix for survey questions.
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value of the reused code. Comparing the ratings between creators and reusers

highlights any discrepancies or alignment in perceived usefulness.

“To what extent were you concerned about potential bugs in this
file?” - Investigating reusers’ concerns about bugs in reused code sheds light
on the perceived risks associated with this practice. Understanding the level of

concern can indicate how much trust reusers place in the original code’s quality.

“How important is it for you to know if the original file has been
changed?” - Understanding reusers’ concerns about changes in the original
files helps identify potential issues related to the stability and continuity of
reused code. Frequent changes can disrupt the functionality of dependent

projects.

“How likely would you use a package manager which could handle
changes to this file if there was one?” - Understanding the likelihood
of reusers adopting a package manager if available provides insights into the

demand for tools that can streamline and manage code reuse.

4.2.2 Sampling Strategy

To ensure a representative and comprehensive sample, we stratified the data

along several dimensions. Stratified sampling ensures that all relevant subgroups

are adequately represented in the survey, enhancing the generalizability of the

findings Creswell and Creswell (2017). By considering multiple dimensions such as

productivity, popularity, copying patterns, file types, and temporal aspects, we ensure

a comprehensive analysis that captures the diversity of reuse behaviors in the OSS

community:

e Productivity and Popularity: Based on the number of commits and

stars, we differentiated between high and low productivity /popularity projects

(similar to RQ1-b).
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e Copying Patterns: We distinguished between instances where only a few
files were copied versus multiple files, as these might indicate different reuse

behaviors.

e File Extension: We included various file types and programming languages

to capture a diverse range of reuse scenarios.

e Temporal Dimensions: We considered the blob creation time and the delay

from creation to reuse to understand temporal patterns in reuse behavior.

4.2.3 Survey Design

For each copy instance, we targeted the author of the commit introducing the blob into
the destination repository and the author of the commit in the originating repository?.
This dual perspective allowed us to capture both the originator’s and the reuser’s
viewpoints, offering a more comprehensive understanding of the reuse dynamics.

We conducted three rounds of surveys, progressively expanding the sample size
and refining the questions based on feedback and preliminary results. We chose to
conduct our survey in three steps to ensure a thorough and iterative approach to

understanding developer motivations behind copy-based reuse.

1. We handpicked 24 developers (12 creators and 12 reusers) for an initial survey
with open-ended questions. This round aimed to gather in-depth qualitative
data and identify key themes. This small, purposive sample size allows for deep,
exploratory insights, which are important for the initial stages of qualitative

research Guest et al. (2006).

2. The survey was sent to 724 subjects (329 creators and 395 reusers) with a mix
of open-ended and multiple-choice questions. This round helped validate and
refine the themes identified in the first round. The increased sample size in

this round provides more data to ensure that the themes and patterns observed

30nly if they had explicitly disclosed their email address on their public profile.
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are not idiosyncratic but rather indicative of broader trends. This intermediate
sample size balances the need for more extensive data while still allowing for

qualitative depth Mason et al. (2010).

3. The survey was expanded to 8734 subjects (2803 creators and 5931 reusers),
with most questions being multiple-choice to facilitate quantitative analysis,
except for the open-ended question about the reason for needing the file. The
large sample size in this final round ensures that the findings are statistically
significant and generalizable across the broader population of developers
involved in copy-based reuse. This sample size aligns with recommendations

for achieving sufficient statistical power in survey research Krejcie and Morgan

(1970).

The reason behind the seemingly random numbers of survey subjects in the
three rounds is that after sampling our data, we had to perform data cleansing and
preparation to reach the survey target audience. This process normally caused some
samples to be removed. Initially, we chose sample sizes of 30, 1,000, and 10,000
respondents for the three rounds respectively, but after the data cleansing process,

the actual numbers were lower.

4.2.4 Thematic Analysis

The thematic analysis allows us to systematically identify patterns and themes
within qualitative data, providing deep insights into the reasons behind copy-based
reuse Braun and Clarke (2006). To analyze the survey responses, we followed a

structured thematic analysis process as outlined by Yin (2015):
1. Compiling: First author compiled all responses.

2. Disassembling: Each author individually analyzed and coded the responses to
identify ideas, concepts, similarities, and differences Austin and Sutton (2014);

Sutton and Austin (2015).
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3. Reassembling: The coded responses were organized into meaningful themes by
each author independently, focusing on identifying different types of reuse Braun

and Clarke (2006).

4. Interpreting and Concluding: The authors discussed and compared the
themes, clarifying and organizing them to ensure a coherent and comprehensive
understanding. The final themes were then used to reclassify and interpret all

survey respoinses.

4.3 Results & Discussions

Across three rounds, we received 247 complete responses from reusers and 127 from
creators. There were also 360 and 178 partial responses, making the total of 607

and 305 responses from reusers and creators respectively. The results are shown in

Table 4.1.

Table 4.1: Survey Participation

Total Started Completed Response Rate Completion Rate
Creator | 3,144 305 127 9.70% 4.04%
Reuser | 6,338 607 247 9.58% 3.90%
Total 9,482 912 374 9.62% 3.94%

As will be discussed in Section 3.6.1, the identified originating repository might
not always be the true creator of the blob. 39% of developers identified as creators
reported reusing the blob from another source. Additionally, reusers might have
obtained the blob from another reuser and not the original creator (see Section 3.6.1).
Among the reusers who confirmed reusing the blob, 43% acknowledged the originating
project as the source, 48% reported copying it from elsewhere, and 9% did not answer
the question.

These findings provide important estimates: the fraction of reuse within open

source software (OSS) is at least 61%, and the fraction of reuse from originating
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projects is at least 43%. This data is essential for understanding the dynamics of
code reuse within OSS, highlighting the significance of both direct reuse from original
projects and secondary reuse through intermediate projects.

Furthermore, only 60% of those identified as reusers confirmed reusing the blob,
while the remaining 40% claimed to have created it (see Table 4.2). This discrepancy
can be attributed to several factors. First, some individuals might indeed be the
original authors of the blob in the originating project, implying they have reused
their own resources. Second, this gap could be explained by activities in private
repositories (e.g., Developer A creates a file in a private repository, Developer B copies
it to a public repository, and then Developer A reuses it in another public repository).
Third, as mentioned in Section 4.2, concerns about potential licensing violations might
have made many reusers uncomfortable admitting the reuse explicitly. Additionally,
developers’ faulty memory could play a role, especially for reuse instances that
occurred a long time ago.

One potential area for further investigation could be examining the project owners
and commit authors for each copy instance to gain a better understanding of this
gap. However, this was not pursued further in this study as it was not the main
focus. Exploring these factors in future research could provide deeper insights into

the complexities of code reuse and attribution within open source software projects.

Table 4.2: Identified vs. Claimed Creators & Reusers

Identified Creators Reusers | Total
Claimed  Creator 77 (61%) 99 (40%) | 176
Reuser 50 (39%) 148 (60%) | 198
Total 127 247 374

Another dimension of the survey explored the intentions of creators for others to
reuse their artifacts. Sixty-two percent of creators indicated that their resources were
intended for reuse by others. When asked about the helpfulness of the particular
blob on a scale from 1 to 5 (with 5 being the most helpful), reusers rated the average

helpfulness at 3.81, while creators rated it at 4.24. This suggests that developers are
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well aware of the reuse potential of their artifacts, even if the blob may be essential
primarily for their own projects.

In the background sections, we discussed the risks associated with this type of
reuse. We asked reusers if they were concerned about these risks as well. On a
scale from 1 to 5 (with 5 being the most concerned), the average concern about
bugs in the reused file was 1.83, and the average concern about changes in the
original file was 2.35. Several factors might contribute to the low level of concern
among developers, including trust in the original code’s quality or confidence in their
own testing processes. However, this lack of concern could facilitate the spread of
potentially harmful code, even if the creator fixes the original code. The fact that
reusers are not significantly worried about these risks amplifies the potential risk at
the OSS supply chain level.

Next, we asked participants how likely they would be to use a package manager
if one were available for the particular blob. On a scale from 1 to 5 (with 5 being
the most likely), the average likelihood of using a package manager was 2.93. This
indicates that although developers may not be very concerned about bugs or changes
(potential improvements), many would still use such a tool if it were available. This
suggests that “package-manager” type tools for refactoring or at least maintaining

reused code might gain traction if developed. These results are shown in Table 4.3.

Table 4.3: Likert Scale Questions (Scale 1 to 5)

Question (audience) Responses Average Median StdDev
How helpful? (creators) 156 4.25 5 1.15
How helpful? (reusers) 185 3.82 4 1.32
Concern about bugs? (reusers) 185 1.85 1 1.33
Concern about changes in the original file? (reusers) 187 2.33 2 1.56
Likelihood of using a package manager? (reusers) 184 2.89 3 1.64

Finally, the thematic analysis of reasons for reuse, specifically responses to the

question “why”, revealed eight themes from the 162 responses we received (see
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Table 4.4%). This analysis provides a nuanced understanding of the motivations

behind code reuse, highlighting several key themes.

Table 4.4: Identified Reuse Themes

Theme Description Frequency
Demo demonstration, test, prototype 14
Dependency  part of a library 11
Education learning purposes 16
Functionality specific functionality 39
Own own reuse 2
Resource image, style, dataset, license 30
Template template, starting point, framework 14
Tool parser, plugin, SDK, configuration 23

As expected, one of the main reasons for reuse was to provide specific functionality.
This indicates that developers often reuse code to incorporate existing functionalities
into their projects, saving time and effort in development, a practice well-documented
in the literature Juergens et al. (2009). This underscores the importance of reusable
components in efficient software development.

Another observed theme was the reuse of various resources, including datasets,
instructions, license files, and graphical or design objects (e.g., PNG, JPEG, fonts,
styles). This aligns with the significant reuse of binary blobs identified in RQI.
The inclusion of diverse resources indicates that developers often depend on readily
available materials to enhance their projects’ visual or functional aspects. While the
literature acknowledges this practice, our findings suggest a slightly higher emphasis
on resource reuse. This indicates that resource management might be more important
for developers than previously thought.

Reusing tools such as parsers, plugins, SDKs, and configuration files was
mentioned 23 times. This practice is noted for its practicality and efficiency in

setting up development environments and ensuring consistency across projects. This

4Since survey participants were chosen through stratified sampling, these frequencies do not
represent the actual data distribution.
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highlights the role of auxiliary software components in streamlining development
processes and providing necessary infrastructure or functionality.

Assignments, school projects, learning objectives, and similar concepts were
another prominent theme. This emphasizes the role of code reuse in the software
development knowledge supply chain, as developers reuse existing code to understand
and learn new concepts.

Code reuse for demonstration, testing, and prototyping purposes was identified
14 times. This theme suggests that developers often reuse code to quickly create
prototypes or test scenarios without focusing on the quality, security, or licensing of
the reused code. The priority in these cases is to achieve rapid results. This aligns
with the findings by Juergens et al. (2009), that developers often clone code to create
prototypes and perform tests. Some of these quick prototypes, however, may end up
as active projects.

Templates, starting points, and frameworks were mentioned 14 times. Developers
often clone templates or frameworks to have a solid foundation for their projects, a
practice supported by findings of Roy and Cordy (2007). This approach leverages
existing structures to expedite development and ensure consistency.

Part of a library or dependency management was cited 11 times. This practice
is highlighted in studies that emphasize the importance of managing dependencies
within the development process, such as the study by Roy and Cordy (2007).
Although checking in library files is not considered best practice, many developers do
so to maintain specific versions and avoid potential issues with updates or changes.
This conscious decision highlights a trade-off between best practices and practical
needs.

Reusing one’s own code was mentioned twice. The theme of “own reuse” where
developers clone their own code for reuse in new projects, is less prominently featured
in the literature compared to other reasons for code cloning. Developers clone their
own code to ensure consistency, save time, and leverage previously written and tested

code. This practice is practical and efficient, especially when developers are familiar
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with the code and its functionality. However, the literature does not emphasize
this reason as strongly. While studies acknowledge the broader concept of code
reuse, their focus is more on reusing code from external sources, libraries, or for
educational purposes Juergens et al. (2009); Roy and Cordy (2007). This discrepancy
suggests that “own reuse” might be an underexplored area in existing research. It
indicates that while developers recognize and practice it frequently, it may not be as
thoroughly documented or emphasized in the academic literature. This gap highlights
an opportunity for further investigation into how and why developers engage in “own
reuse” and its impact on software development processes.

There were also 13 instances where responses were either incomprehensible or the

respondent did not remember the file or the reason for reuse.

Key Findings

1. 39% of identified creators stated they reused the blob from another source.

2. Among reusers, 43% acknowledged the originating project (direct reuse),

while 48% copied from elsewhere (indirect reuse).
3. Reuse within the OSS landscape is at least 61%.
4. 60% of reusers confirmed reuse; 40% claimed creation.
5. 62% of creators intended their resources for reuse.

6. Reusers are not very concerned about potential bugs or changes in the

original file.
7. Reusers are willing to use a package manager if available.

8. Main reuse themes are: functionality, resources, tools, education,

demo/testing/prototyping, templates, dependencies, and own reuse.
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The findings reveal that a non-negligible portion of developers engage in copy-
based reuse within the OSS community. This practice is common, with many reusers
sourcing code not directly from the original creators but through intermediaries.
Understanding these dynamics is important for improving the transparency and
traceability of reused code, which could potentially enhance code quality and security.

The discrepancies between identified and claimed creators highlight complexities
in attribution and ownership. Additionally, survey respondents’ replies are not always
accurate or true, which further complicates understanding the true origins of code.
This gap underscores the need for better tracking mechanisms within repositories
to accurately reflect code origins. Future research could delve deeper into these
factors, offering insights that could inform policy and tooling improvements in OSS
development.

Creators often intend their code to be reused, and both creators and reusers
recognize the utility of such artifacts. This positive perception suggests that
promoting reuse can be beneficial for the community, fostering collaboration and
innovation. However, the difference in helpfulness ratings indicates that there might
be room for improving the clarity and documentation of reusable code to better meet
reusers’ needs.

Despite the low concern about potential risks like bugs and changes, the moderate
interest in package management tools suggests an opportunity for developing solutions
that can help maintain and refactor reused code. Such tools could mitigate risks by
providing updates and improvements in a managed manner, enhancing the overall
reliability of reused code.

The thematic analysis of reuse motivations provides a comprehensive view of why
developers opt for copy-based reuse. Reusing for specific functionality underscores the
importance of modular and reusable code in software development. It also highlights
the potential benefits of well-documented and easily integrable code components that

can be readily reused by others.
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This practice of including library files suggests a deliberate effort to maintain
stability and avoid the uncertainties that might come with updates or changes.
However, it also highlights a potential area for improvement in developer education
and best practices, as well as the importance of tools that can help manage
dependencies more effectively. These insights contribute to our understanding of
the motivations behind code reuse and the practical considerations developers face in
maintaining their projects.

While reusing for demo and testing can accelerate development and innovation, it
also raises potential risks. Developers may inadvertently propagate vulnerabilities
or violate licenses, leading to broader issues within the software supply chain.
Highlighting the importance of balancing speed and security during testing phases
can inform best practices and educational efforts.

Educational use underscores the educational value of code reuse. Reusing existing
code allows learners to understand real-world applications and coding practices,
fostering skill development. However, it also emphasizes the need for proper guidance
and resources to ensure that educational reuse is done ethically and effectively.
Encouraging educators to integrate lessons on best practices in code reuse can enhance
the quality of learning and adherence to legal and ethical standards.

The proportion of no meaningful answers and not recalling the file, indicate that
not all reuse instances are well-documented or remembered by developers. This
lack of clarity can hinder the understanding and traceability of reuse practices. It
highlights the need for better documentation and tracking mechanisms to ensure that
the reasons and contexts for reuse are transparent and well-understood. Implementing
such measures can improve the management of reused code and resources, reducing

potential risks associated with undocumented reuse.
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4.4 Limitations

4.4.1 Survey Response Rate

The relatively low response rate to our survey may have been due to the perception
of the respondents that copying code is a sensitive subject. These concerns may
have impacted the responses even in cases when developers chose to participate. It
suggests that further work may be needed to design surveys that do not create such
impressions.

Additionally, since many of these reuse instances happened a long time ago,
developers might have forgotten about them. Therefore, it is important to conduct
regular surveys to capture the experiences while developers still remember their

practices.
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Chapter 5

OSS License Identification at Scale

Disclosure Statement

A version of this chapter is accepted to be published as Jahanshahi et al. (2024a):

Mahmoud Jahanshahi, David Reid, Adam McDaniel and Audris Mockus. 2024.
OSS License Identification at Scale: A Comprehensive Dataset Using
World of Code. In Proceedings of the 22st International Conference on Mining
Software Repositories (MSR ’25). Just Accepted (January 2025).

This material is included in accordance with ACM’s policies on thesis and
dissertation reuse. (C) 2025 Copyright held by the owner/author(s). Publication
rights licensed to ACM.

Replication package available at: https://zenodo.org/records/14279932

5.1 Abstract

The proliferation of open source software (OSS) and different types of reuse has
made it incredibly difficult to perform an essential legal and compliance task of
accurate license identification within the software supply chain. This study presents a
reusable and comprehensive dataset of OSS licenses, created using the World of Code

(WoC) infrastructure. By scanning all files containing “license” in their file paths,
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and applying the approximate matching via winnowing algorithm to identify the
most similar license from the SPDX and Open Source list, we found and identified
5.5 million distinct license blobs in OSS projects. The dataset includes a detailed
project-to-license (P2L) map with commit timestamps, enabling dynamic analysis
of license adoption and changes over time. To verify the accuracy of the dataset
we use stratified sampling and manual review, achieving a final accuracy of 92.08%,
with precision of 87.14%, recall of 95.45%, and an F1 score of 91.11%. This dataset is
intended to support a range of research and practical tasks, including the detection of
license noncompliance, the investigations of license changes, study of licensing trends,
and the development of compliance tools. The dataset is open, providing a valuable

resource for developers, researchers, and legal professionals in the OSS community.

5.2 Introduction

As the open-source software (OSS) ecosystem has expanded rapidly, it has given rise
to a diverse array of projects, each characterized by different licenses and licensing
practices. A fundamental value of OSS lies in the ability to reuse code, either
through dependency management or by directly copying and potentially maintaining
(vendoring) it. Many licenses impose specific requirements on code usage, such
as the obligation to publish derived works under GPL licenses. The reuse supply
chains are often complex and difficult to trace. Consequently, accurately identifying
OSS licenses across the entire supply chain is crucial for understanding the legal
frameworks that govern OSS distribution and use. Such understanding is crucial
for ensuring license compliance, fostering collaboration, and mitigating risks within
software supply chains. Despite the significance of OSS licensing, existing studies
often fall short of covering the entire supply chain by focusing on specific ecosystems,
subsets of projects, or lack essential attributes needed to identify timing and project

information. Without this information, it becomes impossible to reconstruct the
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dynamics or pinpoint the location of licenses within the supply chain Reid and Mockus
(2023).

This work makes a step in addressing these challenges by compiling a reusable
and comprehensive dataset of OSS licenses. To accomplish that we exploit the World
of Code (WoC) Ma et al. (2021) that contains version history from a nearly complete
collection of publicly accessible software projects. We start from all files that contain
“license” in their file paths and discover over 10M blobs (distinct strings) associated
with these files. For each we then find the most similar license from several “official”
license collections. To accomplish that we use winnowing algorithm, a fingerprinting
technique known for its ability to match text with minor variations, such as differences
in formatting, even in cases where the text is embedded or has undergone slight
modifications Serafini and Zacchiroli (2022). Our method successfully identifies and
maps over 5.5 million distinct license blobs to known licenses, generating a project-
to-license (P2L) map enriched with commit timestamps. Furthermore, we enhance
our dataset by incorporating the previously published dataset by Gonzalez-Barahona
et al. (2023).

This dataset fills critical gaps in the study of OSS licensing by providing: 1) a
large-scale, cross-platform resource for analyzing license adoption, change, evolution,
and compliance, 2) dynamic tracking capabilities through commit timestamps,
enabling longitudinal studies of licensing practices, and 3) a foundation for developing
tools and methods to address challenges in OSS license compliance and compatibility.

The dataset and its associated methodology have been designed with reusability
and scalability in mind, ensuring that it can be readily adopted by researchers,
practitioners, and legal professionals. By making the dataset openly available, we
aim to foster new research in software engineering and contribute to better practices

in the OSS ecosystem.
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5.3 Related Work and Contributions

Understanding OSS licensing practices has been the focus of numerous studies,
ranging from license identification to compliance analysis. These studies have

contributed valuable insights but are often limited in scope, scale, or methodology.

5.3.1 Comprehensive Identification of License Blobs

Previous studies like Wu et al. (2024) and Xu et al. (2023) focus on explicit license
declarations in metadata files, while others, such as Feng et al. (2019), use static
analysis to detect embedded license texts in binaries. While these methods and
datasets advance license text identification, they do not address partial matches or
embedded license texts, which are common in OSS projects.

In contrast, our work leverages the winnowing algorithm, a robust fingerprinting
method, to identify both partial and full matches of license blobs across millions
of files, even when license texts are embedded or slightly modified. This approach
enhances precision and ensures comprehensive identification, capturing both standard

and non-standard licensing practices in OSS repositories.

5.3.2 Broad Scale and Scope of Analysis

Prior studies have often been limited in scope, focusing on specific platforms or
datasets. Large-scale efforts have identified license files but overlooked contextual
information, such as project associations or temporal data. For example, Zacchiroli
(2022) introduced a dataset of 6.5 million blob-license text variant tuples (spanning
4.3 million unique blobs), enabling analyses of text diversity and NLP-based modeling
of license corpora. However, their work focuses on cataloging text variants rather than
linking licenses to their usage within projects. Similarly, Gonzalez-Barahona et al.

(2023) documented 6.9 million blob-license tuples (representing 4.9 million unique
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blobs), but the emphasis remained on cataloging rather than exploring connections
to broader supply chain dynamics.

Our study expands the scope of previous research by analyzing the entire OSS
landscape through the World of Code (WoC) infrastructure. We match over 5.5
million license blobs to known licenses and map them to specific OSS projects
and their histories. This comprehensive project-to-license (P2L) mapping facilitates
detailed tracking of licensing practices across platforms, bridging the gap between

text-level variability and actionable project-level insights.

5.4 Methodology

5.4.1 World of Code Infrastructure

World of Code (WoC)! is an infrastructure designed to cross-reference source code
changes across the entire OSS community, enabling sampling, measurement, and
analysis across software ecosystems Ma et al. (2019, 2021). It functions as a
software analysis pipeline, handling data discovery, retrieval, storage, updates, and
transformations for downstream tasks Ma et al. (2021).

WoC offers maps connecting git objects and metadata (e.g., commits, blobs,
authors) and higher-level maps like project-to-author connections, author aliasing Fry
et al. (2020), and project deforking Mockus et al. (2020). We use WoC to identify
all license blobs and their associated projects?, employing the concept of deforked

projects Mockus et al. (2020) to avoid biases from forks and duplicates.

5.4.2 License Blob Identification

We start by using the blob-to-filepath maps (b2f) in WoC to list all filepaths for

each blob, specifically searching for those with “license” in their filepath. Using blob

https://worldofcode.org
ZVersion V, latest at the time of this study.
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hashes ensures that any license blob, even if associated with a “license” filepath in
only a single project, will still be identified. Using blob-to-project maps (b2P), we
then identify all projects containing that blob, which means that we do not require
the blob to have the “license” filepath in every project. This ensures high recall
in detecting potential license-related blobs by leveraging the collective metadata of
public repositories. This approach resulted in over 10 million distinct potential license
blobs.

Since there are relatively few known licenses, we anticipate that most of these
blobs are similar licenses with minor variations, such as differences in whitespace,
formatting, or non-essential information. The main challenge is matching these varied
license blobs to known licenses.

We use licenses from the Open Source Initiative® and the Software Package Data
Exchange (SPDX)*, which include 103 and 635 licenses, respectively. To match the
10 million potential license blobs with these known licenses, we apply winnowing, an
efficient local fingerprinting algorithm Schleimer et al. (2003).

Winnowing is a document fingerprinting technique often used in plagiarism
detection. It generates fingerprints by sliding a window over hashed words in a
document and selecting the smallest hash value in each window. This reduces the
data needed for document representation, enabling faster and more memory-efficient
comparisons while maintaining accuracy.

Using winnowing, we matched over 7 million potential license blobs to one of
the known licenses (see Table 5.1). We assess the reliability of these matches by
calculating a matching score, defined as the number of shared winnowing signatures
divided by the total winnowing signatures between two files. This score, as shown
in Equation 5.1, measures the similarity between the potential license blob and the

known license, helping to verify the match’s accuracy.

3https://github.com/OpenSourcelrg/licenses
4https://github.com/spdx/license-list-data
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(5.1)

S: Matching score.
A: Set of signatures in document A.
B: Set of signatures in document B.

¢(X): Count function for the number of elements in set X.

Table 5.1: Potential License Blobs Matching Scores

Count Percentage Percentage

(Relative to) (Overall)

Potential Blobs | 10,093,268 100% 100%
Winnowing 9,794,559 97% (Potential Blobs) 97%
Matched 7,167,046  73.2% (Winnowing) 1%
S <=0.2 795,532 11.1% (Matched) 7.9%
02<S5<=04 239,091 3.3% (Matched) 2.4%
04<S<=06 264,667 3.7% (Matched) 2.6%
0.6 <S<=038 435,283 6.1% (Matched) 4.3%
08<S<=1 | 5432473 75.8% (Matched) 53.8%

We categorized matching scores into five groups: below 20%, 20-40%, 40-60%,
60-80%, and above 80%. As shown in Table 5.1, 97% of blobs generated winnowing
signatures. We randomly sampled 30 blobs from the 3% that did not and manually
confirmed they had no meaningful content. Of the 9.7 million blobs, 73% matched a
known license (sharing at least one winnowing signature), with 75% of these matches
scoring above 80%.

To assess match reliability, we sampled 20 blobs from each score group and
manually compared them to the known license using ‘diff'. Given the manual
nature of the verification process, choosing 20 samples for each bucket provides a

manageable workload while still offering a sufficient range of data to detect patterns
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and inconsistencies. Our investigation revealed that matches in buckets with scores
below 80% were not reliable enough, showing meaningful differences.

We then focused on scores above 80% and conducted another stratified sampling
based on score range (80-85, 85-90, 90-95, 95-100) and the number of signatures
(above/below 100). In each group, 20 matches were sampled. The differences fell
into three main categories: 1) identical content with different formatting, 2) identical
content with non-license text, and 3) identical content with additional clauses.

The second category was acceptable, as we do not claim a blob contains only the
matched license. However, the third, with additional clauses, was concerning as it

could alter the license’s nature. Detailed results are in Table 5.2.

Table 5.2: Matching Score Samples

Signatures Score Total Count (%) | Gr. 1 Gr. 2 Gr. 3

80-85 85,294 (1.6%) | 17 3 0
0 8500 150,046 (2.8%) | 17 3 0
90-95 197,875 (3.6%) | 20 0 0
05-100 4,502,264 (82.9%) | 20 0 0
80-85 67,235 (1.2%) | 10 9 1
- 100 85-90 52,894 (1%) | 17 2 1
90-95 60,583 (1.1%) | 18 2 0
95-100 316,282 (5.8%) | 20 0 0

We observed only two mismatches: one in the 80-85% range and one in the 85-
90% range (both in the over 100 signatures group). Based on this, we determined
that setting the threshold at 85% ensures reliable license identification. Above this
threshold, critical mismatches—where additional clauses could alter the license—are
extremely rare. Since over 90% of identified blobs had fewer than 100 winnowing
signatures, the 85% threshold balances comprehensiveness and precision, capturing
most valid matches while minimizing misleading results. This approach aligns with

prior research emphasizing high similarity thresholds to reduce false positives in
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textual matching (e.g., Kapitsaki et al. (2017)). As a result, 5,294,666 distinct blobs
were matched with a known license.

For the remaining 2.5 million potential blobs with no matches, we randomly
sampled 30 and manually investigated them. Only 5 contained license-related content,
either mentioning a license name or linking to a license URL. The other 25 were

unrelated to licenses.

5.4.3 Project to License Mapping

To create the project-to-license (P2L) map, we use the 5.5 million matched license
blobs and join them with WoC’s blob-to-time project (b2tP) map, which links blobs to
the projects they were committed to, along with commit timestamps. This produces
a table mapping each project to a known license and the time of the commit (see
Figure 5.1).

However, a blob’s presence in a project’s latest status cannot be confirmed solely
from commit history, as it might have been removed later. To address this, we use
the project-to-last-commit (P2lc) and tree-to-objects (t2all) maps from WoC. The
P2lc map links projects to their last commit at the time of the latest WoC update
(Version V), allowing us to retrieve the list of all blobs in a project’s current state by
joining P2lc, c2dat (commit-to-tree), and t2all maps. This method not only provides
all the times at which a blob was committed to a project but also verifies whether it
still exists in the project.

The final table is saved as a semicolon-separated file containing three fields®:

Project_ID; License; Commit_Time

The Commat_Time field is in the “YYYY-MM” format and represents the commit
timestamp when the license blob was committed to the project. This field may also

have an “invalid” value, indicating that the commit timestamp was not valid (e.g.,

SFor more information on accessing this data, please visit https://github.com/woc-hack/
tutorial
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Figure 5.1: License Identification Data Flow Diagram

a future time due to discrepancies in the user’s system time). Additionally, if the

license blob was found in the latest status of a project, the time is “latest”.

5.4.4 P2L Verification

For the Project-to-License (P2L) verification, we initially sampled 1,000 projects

from approximately 130 million to evaluate the effectiveness of our license assignment

methodology. This sample size was chosen to provide a statistically significant subset

for manual verification while balancing the need for reliability with the practical

constraints of manual inspection.

We stratified the sample into three groups: 1) Projects with matched licenses,

where our automated process successfully matched license blobs to known licenses,

2) Projects with license blobs but no matched licenses, where license blobs were
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identified, but no matching known license could be confirmed, and 3) Projects without
any license blobs, where no license blobs were detected during the automated search.

This sampling approach was designed to cover a wide range of license detection
scenarios, ensuring a comprehensive evaluation. Graduate students manually
reviewed the sampled projects as part of a class assignment, focusing on verifying
the license information. Out of the 1,000 sampled projects, we received meaningful
responses for 580 projects, distributed as follows: 291 with matched licenses, 139
with license blobs but no matches, and 150 without any license blobs. The results

are presented in Table 5.3.

Table 5.3: License Detection Confusion Matrix Across Stages

Stage ‘ Initial ‘ Adjusted ‘ Refined
‘ License No License ‘ License No License ‘ License No License
Matched 210 81 210 31 210 31
Not Matched 22 267 22 267 10 267
Accuracy 82.24% 90.00% 92.08%
Precision 72.16% 87.14% 87.14%
Recall 90.52% 90.52% 95.45%
F1 Score 80.31% 88.79% 91.11%

Our license detection method demonstrated reasonable performance with an initial
accuracy of 82.24%, precision of 72.16%, recall of 90.52%, and an F1 score of 80.31%.

However, several factors must be considered when interpreting these results: first,
of the 81 projects identified as having matched licenses, 39 no longer exist on GitHub,
preventing license verification, and second, in 11 projects, the license was absent in
the latest status, which does not necessarily indicate a false positive, as the license
could have been removed after an earlier commit. After excluding these cases, we
are left with 31 false positives. Adjusting for these, our revised performance metrics
show significant improvement: accuracy increases to 90.00%, precision to 87.14%,
recall remains at 90.52%, and the F1 score rises to 88.79%.

For the 22 false negatives (where licenses were not detected), further investigation

revealed that only 10 had a missed license blob, which was matched but fell slightly

101



below our 85% threshold. The remaining 12 projects only referenced a license (e.g., in
the README) without including the actual license file in the repository, so they were
not expected to be matched by our method. By excluding these 12 false negatives,
which fall outside our method’s intended scope, we can more accurately assess its

performance. The recalculated metrics show an accuracy of 92.08%, precision of

87.14%, recall of 95.45%, and an F1 score of 91.11% (see Table 5.3).

5.4.5 Complementing Data

Although our P2L map already demonstrated strong performance in manual ver-
ification, we incorporated the previously published dataset by Gonzalez-Barahona
et al. (2023) to enhance data comprehensiveness. Their dataset includes only blobs
and their detected licenses using ScanCode Ombredanne (2022). We filtered data to
blobs with license detection confidence 95% or higher and applied the same process
described earlier to map these blobs to commits and projects, enabling us to determine
the time and project in which each license was committed. The merged table (see
Figure 5.1) includes a column indicating the license detection method for each entry:
either our method (1-WoC) or the Software Heritage dataset method (2-SH) Gonzalez-
Barahona et al. (2023).

5.5 Applications

The dataset described in this work provides a robust foundation for addressing key
challenges in open source software (OSS) licensing. Below, we discuss use cases
supported by the dataset and illustrate them with examples from ongoing research
conducted by the authors, which are currently under review and cannot be cited

directly.
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5.5.1 Ensuring License Compliance

Managing license compliance is a critical issue in OSS, where licensing conflicts or
noncompliance can lead to significant legal and ethical challenges. This dataset
enables research into understanding and mitigating compliance risks. For instance,
the dataset has been used to analyze how licensing conflicts arise from code reuse
across OSS projects. These insights underscore the need for advanced compliance
tools that leverage comprehensive project-to-license mappings to detect and address

potential license violations.

5.5.2 Analyzing Licensing Trends and Practices

Understanding how OSS licenses are selected and evolve over time is essential for
improving licensing practices and fostering innovation. The dataset supports large-
scale analyses of license adoption trends, revealing patterns and the factors influencing
license choices (e.g. Vendome et al. (2017)). For example, it has been used by the
authors to explore the dynamics of license adoption, examining the role of social,
technical, and ideological factors in shaping these decisions. The dataset’s extensive
coverage allows researchers to track the evolution of licenses within and across OSS

ecosystems, providing actionable insights for developers and policy-makers.

5.5.3 Supporting Ecosystem Studies and Tool Development

The dataset’s comprehensive project-to-license mapping has broad applicability in
supporting ecosystem studies and tool development. Such applications include
investigating how licensing practices influence collaboration and innovation in OSS
communities, enabling the creation of automated tools for license verification,
detecting noncompliance, recommending suitable licenses, and providing a resource

for educating developers on licensing implications and best practices.
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5.6 Limitations

Scope of License Identification The current methodology focuses on files
explicitly named “license” or located in license-related directories, which may miss
license information embedded in source code headers, build scripts, or files with
unconventional names. These gaps particularly affect older or unconventional OSS
projects. Expanding the search scope and using natural language processing (NLP) or
pattern recognition could improve coverage. To partially address this, we incorporate

the dataset by Gonzalez-Barahona et al. (2023) to enhance comprehensiveness.

Implicit Licensing Practices Implicit licensing practices, such as referencing
licenses by name or URL in README files or documentation, are not captured,
potentially leaving gaps for permissively licensed projects. Future work could parse

these files to link references to known licenses.

Data Completeness and Noise Finally, while robust heuristics minimize errors,
some non-license files may be misidentified, and legitimate licenses in non-standard
formats could be excluded. Feedback mechanisms and automated quality checks could

further enhance reliability.
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Chapter 6

The Intersection of Copy-Based

Reuse and License Compliance

Disclosure Statement

A version of this chapter is based on work that has been submitted for publication.
The manuscript is currently under review.

This material is included in accordance with academic guidelines on thesis and
dissertation reuse.

Replication package available at: https://zenodo.org/records/14061115

6.1 Abstract

As other creative work, source code is protected by copyright. The owner can
license the work, e.g., to permit copy and other kinds of use, and even start legal
proceeding against license violators. However, source code can be reused in subtle
ways, e.g., via copying without explicit package manager dependencies, making it
hard to reason about potential license noncompliance. Using the World of Code

infrastructure approximating the entirely of open source software, in this paper we
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create a copy-based code reuse network mapping direct copying across projects, and
use it to quantify the extent of potential license noncompliance across the entire open
source ecosystem. In addition, we estimate regression models to understand whether
code copying is affected by the origin project’s license, and, if so, how it varies with
other project characteristics.

We find that code in repositories with permissive licenses, such as MIT and
Apache, shows higher likelihood of reuse across programming languages. In contrast,
copyleft licenses, like the GPL, exhibit mixed effects. Public domain licenses, despite
their aim of allowing unrestricted use, are associated with lower likelihood of copy-
based reuse. A widespread potential license noncompliance appears to accompany
copy-based reuse, with 39.4% of project combinations at potential noncompliance
risk, particularly when licenses are unclear or absent. Our findings reveal that
only 2.43% of reuse detected through the copy-based network was discoverable via
dependency analysis, highlighting the limitations of existing dependency-tracking
tools in capturing copy-based reuse. This gap underscores the need for more
advanced methods to ensure license compliance in open source projects, from nudging
developers to set appropriate license templates to flagging potential noncompliance

due to license changes across copy origin and destination projects.

6.2 Introduction

Open Source Software (OSS) plays a critical role in software development and
distribution across various industries. A fundamental aspect of OSS is its licensing,
which dictates how software can be reused, modified, and redistributed. OSS licenses
are typically categorized into permissive licenses (e.g., MIT, Apache), copyleft licenses
(e.g., GPL), weak copyleft licenses (e.g., LGPL), public domain licenses, and others
with specific conditions (e.g., Creative Commons). Each type of license imposes
distinct obligations on developers and users, making the choice of license a pivotal

factor in determining the extent and manner in which a project’s code can be reused.
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Moreover, creative works, such as code, are protected by copyright by default if no
license is specified. Despite these legal restrictions, code without a license is often
copied in practice Vendome et al. (2018) and even used to train Large Language
Models Xu et al. (2024).

This study aims to enhance understanding of the extent to which, and the
contexts in which, different OSS license types affect software reuse in copy-based
reuse networks, where artifacts are copied from one repository to another.

While prior research has primarily focused on dependency-based reuse, where
projects formally declare dependencies on external libraries, copy-based reuse—where
code is directly copied between projects—introduces unique challenges regarding
license compliance and tracking, because there is typically no trace of the copying.
Studies highlight that identifying the exact origin of reused OSS components remains
a significant challenge, underscoring the need for more effective tools to track code
provenance, particularly to ensure compliance with copyleft licenses Tuunanen (2021).

Although copy-based reuse is common in OSS development Jahanshahi et al.
(2024b), it is often overlooked in studies that focus exclusively on dependencies
managed through package managers Fendt and Jaeger (2019); Phipps and Zacchiroli
(2020); German et al. (2010). While the decision to copy an artifact from an upstream
project may be driven by factors largely unrelated to license compatibility, the type
of license should still play a significant role, particularly if the license of the copied
artifact is ultimately incompatible with that of the reusing project.

Specifically, we answer the following research questions:

e RQ1: How does the license type of the upstream project affect the probability

of its artifacts getting copied?

e RQ2: How widespread is potential license noncompliance in copy-based reuse

network?

We begin by reviewing the literature on code copying to identify key factors

driving this phenomenon. Next, we use the World of Code (WoC) infrastructure,
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which provides comprehensive, cross-referenced data on the global OSS ecosystem,
to operationalize these factors and create a curated dataset of copying instances,
including the licenses of both upstream and downstream projects. Finally, we fit a
model that examines the probability of a project’s artifacts being reused based on its
license, while controlling for other contextual factors.

Our findings indicate that permissive licenses, such as MIT and Apache, are con-
sistently associated with higher reuse rates across multiple programming languages.
In contrast, copyleft licenses, like GPL, display more complex reuse patterns. While
they are associated with higher rates of reuse in certain cases, such as in JavaScript
projects, they are generally associated with lower reuse when factors like project
size and activity are considered. Interestingly, projects under public domain licenses,
which are intended to permit unrestricted reuse, tend to experience lower reuse rates.
This suggests that legal uncertainties surrounding these licenses may deter developers
from reusing the code.

One notable issue we uncovered is the prevalence of license noncompliance
in copy-based reuse, especially when projects either lack a clear license or use
incompatible licenses, posing legal risks for developers and organizations alike.
License noncompliance in software reuse is not just a theoretical concern but has
resulted in significant legal disputes in the software industry. A notable example is
the Jacobsen v. Katzer case Shagall and Breithaupt (2008), wherein the court upheld
the enforceability of open source licenses under copyright law. Jacobsen, the creator
of the Java Model Railroad Interface (JMRI) project, sued Katzer for incorporating
JMRI’s code into commercial software without adhering to the terms of the project’s
Artistic License. The court’s decision affirmed that violating open source license terms
constitutes copyright infringement, emphasizing the legal obligations developers have
when reusing code.

Another case illustrating the repercussions of license noncompliance involves the
GPL-licensed BusyBoz OSS project Software Freedom Law Center (2007). BusyBox

developers filed lawsuits against several companies for distributing their software
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within commercial products without complying with GPL terms. These companies
failed to provide access to the source code and did not include the GPL license text
with their products, both required under the GPL. The legal actions often resulted
in settlements where the offending companies agreed to release the source code and
comply with the GPL terms.

These real-world examples underscore the importance of understanding and
adhering to license terms, especially in copy-based reuse where code is directly
replicated between projects. Noncompliance not only exposes developers and
organizations to legal risks but also undermines the collaborative ethos of the OSS
community German et al. (2010). It can deter developers from contributing or reusing
code due to fears of infringement, thereby stifling innovation and collaboration.
Therefore, ensuring proper license compliance is essential for fostering trust and
sustainability in open source software development.

Finally, our study reveals that traditional tools focused on dependency tracking
fail to capture a substantial number of reuse cases occurring through direct code
copying. This highlights the need for more sophisticated tools capable of detecting
direct code copying at scale, to improve license compliance monitoring within the

OSS ecosystem.

6.3 Related Work and Knowledge Gaps

6.3.1 Software Reuse

In open source software, the reuse within supply chains can be categorized based on

how open source components are integrated and used in software projects Mockus

(2019b, 2022, 2023).
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Dependency-Based Reuse

This category involves incorporating open source libraries and packages as depen-
dencies in a project. Package managers like NPM for JavaScript, pip for Python,
or Maven for Java are typically used to manage these dependencies. If not properly
overseen, reliance on these dependencies can introduce vulnerabilities and risks Yan

et al. (2021).

Copy-Based Reuse (Our Focus)

In copy-based reuse, developers directly copy code from OSS projects, e.g., a utility
function Jahanshahi et al. (2024Db), into their own projects. While this approach
is quick, it can lead to challenges in maintaining and updating the copied code.
Therefore, it’s essential to track and manage these copies to ensure they remain
secure and up-to-date Ladisa et al. (2023).

Previous studies have identified several factors that influence the likelihood of
a project’s artifacts being reused through copy-based methods Jahanshahi et al.
(2024b). One key factor is project activity, typically measured by the number
of commits. Projects with a higher commit count are generally more active and
frequently updated, making them attractive to developers seeking reliable and current
code snippets Koch and Schneider (2002). Another important factor is project size,
often indicated by the number of files. Larger projects tend to offer a broader range
of functionalities and code examples, increasing the likelihood that other developers
will find useful code for reuse. This extensive codebase provides a valuable resource
for copy-based reuse Mockus (2007). The collaborative nature of a project also plays
a role. Metrics such as the number of authors reflect the volume and diversity
of expertise within a project’s contributor base. Projects with more contributors
tend to benefit from enhanced innovation and decentralized communication, which
can improve the development process Crowston and Howison (2005) and increase

the likelihood of reuse Jahanshahi et al. (2024b). Community engagement and
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popularity, often approximated by metrics such as the number of forks and stars
on platforms like GitHub, further explain reuse potential Tsay et al. (2014); Borges
et al. (2016). Projects with more forks and stars are more visible and reputable within
the developer community, increasing trust and making their code more likely to be
reused Jahanshahi et al. (2024b). These indicators reflect community interest and
endorsement, enhancing the project’s appeal as a resource.

The maturity and stability of a project, assessed through its duration of
activity, age, and activity fluctuations (burstiness), also correlate with its reuse
potential Jahanshahi et al. (2024b). Mature projects with sustained activity over a
long period are often viewed as stable and reliable. Consistent development without
erratic bursts signals a well-maintained project, increasing the likelihood that its code
will be reused Gamalielsson and Lundell (2014). Additionally, a project’s community
culture and technical characteristics—approximated by its primary programming
language—play a significant role in explaining its reuse potential Jahanshahi et al.
(2024b). Different programming languages vary in popularity, community support,
and ecosystem maturity Bissyandé et al. (2013). Projects written in widely adopted
languages such as Python, JavaScript, or Java are more accessible to a larger pool
of developers, thus increasing the chances of their code being reused. Moreover, the
programming language reflects the community’s coding conventions, documentation
practices, and collaboration norms, which can make the project more appealing for
developers looking to incorporate its code into their own work.

Finally, the literature highlights that permissive licenses, such as MIT and
BSD, are generally associated with higher reuse rates compared to restrictive licenses
like GPL Kashima et al. (2011); Brewer (2012). Additionally, a delay in license
adoption for a project might increase the chances of its artifacts being reused as
the absence of a clear license can create ambiguity, leading developers to assume
permissibility, thus fostering reuse even if unintended by the project maintainers.
However, these conclusions are based on simple statistical analyses that do not

account for the critical factors influencing reuse discussed earlier. Therefore, it is
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possible that the observed effect of licensing on reuse is not as strong as suggested, or
that other variables may be driving these patterns. A more comprehensive analysis—
one that controls for these additional variables—is necessary to determine whether
licensing independently influences reuse or if the previously-reported results are
mostly shaped by other project characteristics. Towards answering RQ1, we posit

two concrete hypotheses:

e Hypothesis (H1a): Projects using permissive licenses, when controlling for

other context factors, have a higher likelihood of their artifacts being reused via

copying.

e Hypothesis (H1b): Projects using restrictive licenses, when controlling for

other context factors, have a lower likelihood of their artifacts being reused via

copying.

6.3.2 Open Source Licenses

There are many licenses for open source code, each with its own requirements and
restrictions.

Permissive licenses, such as MIT and Apache-2.0, typically allow for extensive
reuse with few restrictions. They usually require only attribution and permit
integration with other license types, offering significant flexibility Laurent (2004).
In contrast, copyleft licenses, such as the GPL, require that any derivative work
be distributed under the same license. Noncompliance can occur if copyleft-licensed
code is combined with code under a non-copyleft license without adhering to the
copyleft terms. For example, incorporating GPL-licensed code into proprietary
software without releasing the combined code under the GPL would violate the
license Stallman (2002). This principle ensures that all modifications and derivative
works remain free, preserving software freedom Lessig (2004). Weak copyleft
licenses, such as the LGPL, are less restrictive than full copyleft licenses. They

permit linking with proprietary software without requiring the entire work to be
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open sourced, as long as the LGPL-covered components remain modifiable and
separable. However, it’s important to carefully consider the terms to avoid violations,
particularly regarding modification and distribution Rosen (2005). Conditional
open licenses, including many Creative Commons licenses, offer specific conditions
for use. For example, CC-BY licenses require attribution, while CC-BY-SA licenses
require derivative works to be licensed under the same terms. These licenses can
include share-alike clauses, which impact how code can be distributed, especially
if combined with other licenses with different terms. While these licenses are
more commonly used for creative works than software, they can still impact code
distribution. Public domain and license-free software code generally impose
no restrictions on reuse, as they are not protected by copyright. Works in the
public domain can be freely used, modified, and distributed. Finally, projects
with no explicit license (not to be confused with license-free) present significant
legal risks. By default, all rights are reserved under copyright law, meaning that
reuse, modification, or distribution may be restricted without the author’s explicit
permission Valimiki (2005). This lack of clarity can lead to potential legal issues, as

the permissions for using the software are not clearly defined.

6.3.3 Open Source License Compliance

License compatibility is a critical concern in OSS development. Projects often
encounter significant difficulties when integrating components with conflicting li-
censes Di Penta et al. (2010). Ensuring compliance with open source licenses is
also a major concern for companies incorporating OSS into their products. German
et al. (2010) emphasized the need for auditing OSS distributions to ensure adherence
to license terms, especially in scenarios where components with varying licenses are
integrated. Wu et al. (2024) conducted a large-scale empirical analysis on the usage
of open source licenses, highlighting the practices and challenges developers face.

Their findings revealed frequent misunderstandings and misapplications of licenses,
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especially in large-scale projects. Cui et al. (2023) created a tool called DIKE to
detect license conflicts in over 16,000 popular free and OSS software, finding that
over 25% had conflicts. In addition, their study suggests that these conflicts often
arise from misinterpretations of license terms and the challenges of handling multi-
license environments. Finally, Mathur et al. (2012) conducted an empirical study on
license violations resulting from code reuse across 1,423 projects, uncovering numerous
instances of license incompatibilities.

In addition, many developers involved in OSS projects do not fully understand
the implications of the licenses they use. Almeida et al. (2019, 2017) revealed gaps
in developers’ knowledge of licensing issues, which can result in non-compliance,
particularly in complex projects that integrate multiple OSS components. Moraes
et al. Moraes et al. (2021) and Qiu et al. Qiu et al. (2021) focused on the JavaScript
ecosystem, investigating the effects of multi-licensing and license violations related
to dependencies. Their findings show that the complex network of dependencies in
JavaScript projects frequently results in unintentional license violations, highlighting
the need for improved dependency management practices. Feng et al. Feng et al.
(2019) investigated license violations in large-scale binary software, revealing that
many projects unintentionally breach license terms due to the complexities involved
in binary distribution. Finally, Papoutsoglou et al. (2022) examined licensing
questions on Stack Exchange sites, their results showing that many developers find it
challenging to grasp licensing terms, leading to frequent inquiries about compliance
and compatibility issues.

Studies have also demonstrated that a project’s declared license is not always
reliable German et al. (2010); Reid and Mockus (2023); Wolter et al. (2023). For
example, in a study of OSS projects on GitHub, Wolter et al. (2023) discovered that
in approximately 50% of the projects analyzed, the top-level declared license did not
fully reflect all the licenses present within the project, emphasizing the importance
of improved education and automated tools for ensuring compliance. Moreover, Wu

et al. (2015) found instances where the license of a source code file was altered after
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being copied, both by the original author of the code, and by the reuser; the latter
likely constitute a license violation.

The complexities of OSS licensing are further heightened by the widespread
practice of copy-based code reuse, which can lead to unintended license violations Ja-
hanshahi et al. (2024b). Managing license compliance in these scenarios is crucial for
maintaining the integrity of open source projects. Jahanshahi et al. (2024b) showed
that 80% of OSS projects have practiced copy-based reuse, including large and popular
projects. They also demonstrated that a significant portion of the reused artifacts
originate from small, lesser-known projects. Given the widespread prevalence of copy-
based reuse and the complexities of tracking the origins of artifacts, we anticipate a
high potential risk of license noncompliance in this type of reuse. This issue becomes
even more critical considering that copy-based reuse is generally overlooked both
by prior research and practitioners, thereby increasing the overall risk for the OSS

community. Towards answering RQ2, we hypothesize that:

e Hypothesis (H2a): Copy-based reuse carries a high risk of license noncom-

pliance due to compounded complexities in tracking artifact origins.

e Hypothesis (H2b): By overlooking copy-based code reuse, we are missing a

significant portion of license noncompliance issues in open source software.

6.3.4 Our Study vs Prior Work

Our work offers a comprehensive and practical approach to identifying and addressing
potential licensing issues arising from copy-based reuse in open source software, and

it distinguishes itself from prior research in several ways:

Comprehensive Identification of Licenses

Most studies, including those by Wu et al. Wu et al. (2024) and Xu et al. Xu et al.

(2023), rely heavily on explicit license declarations in metadata files. Others, like
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Feng et al. Feng et al. (2019), use static analysis of binaries to detect embedded
license texts. However, these approaches can miss licenses that are not explicitly
declared or are located in less conventional directories. In contrast, our work analyzes
a comprehensive dataset Jahanshahi et al. (2024a) created by exhaustively scanning
the entire OSS landscape (as reflected in the World of Code Ma et al. (2019)) for files
containing the word “license” in their filepath. This includes not only standard license
files but also any file that may contain licensing information, ensuring no (obvious)

potential license data is overlooked.

Scale and Scope of Analysis

Previous studies often concentrate on specific platforms (e.g., GitHub), particular
package manager ecosystems (e.g., NPM), or a narrow range of licenses (e.g.,
OSI-approved), leading to a partial approach to license detection and analysis.
For instance, the work by Feng et al. (2019) maps binary code to source code,
detecting instances where code is directly incorporated into binary software. While
theoretically feasible, this approach encounters significant scalability challenges due to
the substantial processing power required for large-scale analysis. The computational
demands of binary-to-source mapping render it impractical for use across the entire
open-source ecosystem, especially when dealing with diverse binaries and platforms.
In contrast, our work examines the entire open-source ecosystem, offering a more
comprehensive, cross-platform perspective on licensing violations. By focusing on
scalable methods that encompass various licenses, package managers, and code reuse
practices, our approach addresses the scale limitations of prior studies, while providing
a more practical solution for detecting license violations across the open-source
landscape. Moreover, our approach is not limited to code reuse; it can identify reuse
across various types of artifacts, including documentation, configuration files, and
other non-code components. This capability offers a more comprehensive perspective

on reuse and the associated licensing challenges.
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Controlling for Project Context

Compared to prior research, our work reflects a more nuanced analysis of the
relationship between software licensing and code reuse. Unlike earlier studies that
primarily used bivariate statistical correlations Kashima et al. (2011); Brewer (2012),
we use a more sophisticated methodology that accounts for covariates, such as project
size, community activity, and programming language. By controlling for these factors,
our work provides a clearer understanding of whether licensing type—permissive
versus restrictive—independently influences reuse probability. This allows us to re-
examine the claims made in prior studies and offers more robust insights into the

impact of licensing on OSS reuse.

Analysis of License Violations in Copy-based Reuse

While many studies have explored license conflicts, few have employed a copy-
based reuse network approach to understand the reuse patterns and potential
violations and they often focus only on dependency-based reuse networks. As shown
recently Jahanshahi et al. (2024b), copy-based reuse is prevalent and contributes
significantly to reuse practices in OSS. Our research uses the copy-based reuse network
to identify potential license violations due to license incompatibilities and reuse
patterns, providing a novel perspective on how licenses interact across repositories.
This not only reveals license conflicts but also traces their origins, facilitating targeted

resolutions and ensuring compliance across the software ecosystem.

6.4 Methodology

6.4.1 World of Code Infrastructure

World of Code (WoC) Ma et al. (2019) is an infrastructure developed to cross-reference
source code change data across the entire OSS community, enabling sampling,

measurement, and analysis both within and across software ecosystems Ma et al.
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(2019, 2021). Essentially, WoC functions as a software analysis pipeline, handling
data discovery and retrieval, storage and updates, as well as the transformations and
augmentations required for subsequent analytical tasks Ma et al. (2021).

WoC provides various maps that link git objects and metadata (e.g., commits,
blobs, authors) to each other. It also offers more advanced maps, such as project-
to-data connections (e.g., project-to-author), author aliasing Fry et al. (2020), and
project deforking maps Mockus et al. (2020). In our study, we use WoC’s project-
to-license (P2L) map Jahanshahi et al. (2024a), which shows the licenses committed
to each project in its most recent state (Version V of WoC, updated in March 2024).
Additionally, we apply the concept of deforked projects, as introduced by Mockus
et al. (2020), to minimize potential biases caused by forks and duplicates of the same
project. Throughout this paper, the term “project” refers to these deforked projects

unless stated otherwise.

6.4.2 Copy-based Reuse Network

In the context of OSS development, analyzing code reuse is essential for understanding
the propagation of software components and the associated licensing implications.
Traditionally, the literature has primarily focused on dependency-based reuse,
where the relationships between projects are analyzed based on declared package-
manager dependencies, such as libraries or frameworks included in a project. While
dependency-based analysis provides valuable insights into how projects rely on
external components, it often overlooks the more granular aspect of direct code
copying, which can occur independently of formal dependencies. Such practices are
common in OSS projects but often remain undetected in dependency-based analyses,
as shown by Jahanshahi et al. (2024b). By mapping these direct copies, a copy-based
reuse network provides a comprehensive view of code propagation, highlighting the

actual flow of code between projects.
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In the realm of license compliance, dependency-based analysis often focuses on
the licenses of declared dependencies. However, license obligations are not limited
to these formal dependencies. Copy-based reuse, particularly when undetected, can
lead to unintentional license violations. By mapping direct code copying, a copy-
based reuse network allows for the identification of potential licensing conflicts that
may arise from incorporating code with incompatible license terms, when the code
wasn’t part of a declared dependency.

To track this kind of reuse, WoC offers the Ptb2Pt map, which lists reused blobs
(i.e., file versions) along with the creator, reuser, and the time each project first
committed that blob Jahanshahi and Mockus (2024). This map is created by sorting
the timestamps of all commits creating a blob, with the project associated with the
earliest commit identified as the creator. Projects with any subsequent commits are
then identified as reusers of that blob.

Next, since we are interested in a project-level analysis and since projects may
reuse many blobs from one another, we further aggregated the data based on unique
combinations of upstream and downstream projects, counting the number of reused
blobs between these projects for each combination. The total number of unique
upstream-downstream project combinations was 1,815,996,757. Given our focus on
potential license noncompliance, we excluded all instances of code reuse where the
same entity (account) owns both the source and target projects. This further reduced
the data down to 1,788,541,220 combinations, indicating that about 1.5% of reuse
instances occurred between projects with the same owner.

Furthermore, given that the distribution of copied blob counts between projects
is heavily right-skewed, we analyze potential noncompliance within the reuse network
in two distinct modes to gain better insights. First, we consider complete reuse,
including any instance where at least one blob has been copied in our analysis.
Second, we refine the data to focus on reuse instances where at least ten blobs
have been copied between upstream and downstream projects, as a proxy for more

deliberate and substantial reuse.
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6.4.3 Potential License Noncompliance

Noncompliance can manifest in various ways, often resulting in substantial legal
and operational risks. For example, it can occur when there are conflicts or
misunderstandings regarding the terms and conditions of these licenses. To better
understand the associated risks, we categorize the outcomes of license combinations
into three levels: No Issues, Potential Issue - Low Risk, and Potential Issue - High

Risk.

No Issues This category covers situations where combining different licenses
does not create legal or practical issues. Projects under these licenses can be
freely integrated, modified, and redistributed without concern for restrictive terms.
For instance, public domain and permissive licenses, such as the MIT or Apache
2.0 licenses, generally impose minimal restrictions. These licenses are designed
to encourage widespread use and modification, making them highly compatible
with other licenses. Their permissive nature ensures that they do not impose
additional restrictions on combined works, allowing for seamless integration with

other projects Laurent (2004); Rosen (2005).

Potential Issue - Low Risk These combinations produce minor or manageable
incompatibilities, such as attribution, notice preservation, or compliance with specific
conditions. For example, weak copyleft licenses, such as the LGPL, allow linking with
proprietary software, provided that modifications to the LGPL-covered code remain
open-source. This flexibility reduces the likelihood of significant legal issues when
combined with other licenses. Similarly, licenses such as the Mozilla Public License
(MPL) require modified files to be distributed under the same license but allow linking

with other code, thus posing only minor issues Fitzgerald (2006).

Potential Issue - High Risk These combinations can create substantial legal or

practical obstacles. These issues typically arise from strict copyleft provisions or other
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Table 6.1: License Reuse Matrix and Potential Noncompliance Scenarios

To Permissive Copyleft Weak Conditional Public No
From Copyleft Open Domain License
Permissive No No No No No
Copyleft High No High High High High
Weak Copyleft No No High
Conditional High High High High
Public Domain No No No No No No
No License High High High High High High

incompatible conditions that limit the redistribution, modification, or integration
of the software. For instance, strong copyleft licenses, such as the GPL, require
that any derivative works be licensed under the same terms. This requirement can
conflict with other licenses, especially those that are more permissive or do not
allow for relicensing under the GPL’s terms. Such incompatibilities can prevent the
distribution of combined works, necessitating careful consideration and potentially
complex legal negotiations Stallman (2002); Moglen (2001).

The matrix in Table 6.1 outlines various reuse scenarios and the corresponding
risks of license noncompliance.

We use this rationale in RQ2 to identify and categorize potential license
noncompliance in our copy-based reuse network. We use projects’ latest status
licenses for this examination. Since both upstream and downstream projects may
have multiple licenses, we evaluate all combinations of possible noncompliance to
test hypothesis H2a. However, there is an aggregation design decision here: how to
aggregate possible noncompliance combinations of licenses with different risk levels
for the same pair of upstream—downstream projects? We consider two options. For
a high sensitivity approach, we select the highest risk level combination of licenses
for a given pair of upstream—downstream projects. Conversely, for a low sensitivity

approach, we select the lowest risk level combination.
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max (risk(La,, Lp,)) : High Sen.
Compliance, g =

min (risk(L4,, Lp;)) : Low Sen.

where:

e L,,: Each license of Project A,

e Lp,: Each license of Project B,

e risk(Ly4,, Lp;): Incompatibility risk level between license L4, and license Lp;.

For brevity, we present and discuss only the low-sensitivity results below, but

include the high-sensitivity results in our replication package, for completeness.

6.4.4 Copy-based vs. Dependency-based Reuse

To test our hypothesis H2b, we compare the reuse instances captured via copy-
based network with dependency-based network. For this analysis, we focus on
high-risk categories in low-sensitivity mode with 10 or more reused blobs—our least
conservative scenario—to quantify how often noncompliance is detectable through
conventional methods (package manager analysis) versus cases that require copy-
based detection. To keep the analysis tractable we selected a sample of 50,000
unique upstream-downstream project pairs from our dataset. Using a stratified
sampling, we proportionally selected from each of the 16 high-risk categories, which
together represent a total of 82 million projects. To ensure adequate representation
of smaller categories, a minimum sample size of 1,000 was enforced, even when
the proportional size was smaller. This approach ensures sufficient representation
from smaller categories while maintaining overall proportionality. Our final sample
included a total of 57,341 project combinations.

Next, we used the maps provided in WoC, which detail all import and export

statements in every blob for each commit. By analyzing these maps, we identified
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all import/export statements within the projects in our sample!. We then matched
these statements between upstream and downstream projects to determine if they
share any declared dependencies (i.e., the downstream project imports a package

that the upstream project exports).

6.4.5 Regression Model

In RQ1, we investigate whether the upstream project’s license type affects the
likelihood of its artifacts getting reused, testing hypotheses Hla and H1b. Since
the response variable is binary (1 if the project has introduced at least one reused
blob, 0 otherwise), a logistic regression model is used. It is the standard approach
for binary outcomes and enables us to estimate the probability of reuse from various

predictors Agresti (2012).

Stratified Sampling

Given the scale and diversity of OSS projects, we employed a stratified sampling
approach to ensure that our regression model accurately represents the OSS land-
scape Thompson (2012). Projects were divided into strata based on six key variables:
number of commits, blobs, authors, forks, active months, and earliest commit time.
These variables reflect project size, activity, and history, all of which are likely to
influence our outcome variables, as discussed in Sec. 6.3 above. The strata were
defined as follows: number of commits (fewer than 500, 500-2000, and more than
2000), number of blobs (fewer than 10,000 and more than 10,000), number of authors
(one author, 2-10 authors, and more than 10 authors), number of forks (no forks
and at least one fork), and active months (fewer than three months and more than
three months). Additionally, we categorized projects into four historical eras based
on their earliest commit time: the Foundational Era (before 1998), the Dot-com

Boom and OSS Expansion (1998-2010), the Maturation and Mainstream Adoption

! Analyzed languages: Java, JavaScript, Python, R, Rust, Scala, C#, Go, Groovy, Kotlin, and
Perl.
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phase (2010-2018), and the Modern Era with a Community Focus (2019-present).
This stratification resulted in 288 unique bins. We sampled projects from each bin,
yielding a final dataset of approximately half a million projects. While some bins
contained fewer projects than anticipated due to uneven distribution, this approach
ensures that our sample is representative of the broader OSS ecosystem, allowing for

robust and generalizable conclusions from our analyses.

Predictors

Checking for correlations among predictors is crucial in regression models, as
multicollinearity—strong correlations between predictors—can distort the results and
reduce reliability Dormann et al. (2013). To manage multicollinearity, we applied
a 0.6 correlation threshold. Variables with correlations exceeding this threshold
indicate overlapping information, and removing them helps mitigate multicollinearity
while retaining the most important predictors and their portion of explained
variance Vatcheva et al. (2016). The descriptive statistics for the remaining variables

are provided in Table 6.2.

Table 6.2: Regression Model - Descriptive Statistics

Variable Description Statistics
Reuse Introduced at least 1 reused blob Yes: 444,144 (77.62%) No: 128,029 (22.38%)
5% Median Mean 95%
EarliestCommit Time since the earliest commit 05/08/2006 07/05/2017 01/31/2016 11/23/2021
LatestCommit  Time since the latest commit 04/30/2011 02/17/2020 03/15/2019 04/28/2023
CoreAuthors Authors with 80%+ of commits 1 2 8.62 17
Forks Number of forks 0 0 27.66 48
Commits Number of commits 2 155 2,982.63 5,770
Files Number of files 5 1,820 17,295.57 59,939.60
AdoptDelay Earliest commit to license adoption (days) 0 0 133 751
Burstiness (Latest - Earliest) / Active months 0 1 1.87 6.37
Language JavaScript C/C++ Python Java PHP Ruby (Remaining)
Counts (%) 221,588 (38.72%) 82,551 (14.43%) 53468 (9.34%) 50,372 (8.80%) 44,952 (7.86%) 18,592 (3.25%) 100,650 (17.59%)
License No License Permissive Copyleft Weak Copyleft ~ Conditional Open  Public Domain
Counts (%) 263974 (46.13%) 148,320 (25.92%) 60,925 (10.65%) 43,143 (7.54%) 30,933 (5.41%) 24,878 (4.35%)

While we removed highly correlated numerical variables to avoid multicollinearity;,
this approach cannot be directly applied to categorical variables. Therefore, we

included interaction terms between two categorical variables—license type and
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programming language—in our model to better capture the combined effect of these
factors on reuse probability. This approach allows us to account for potential
interactions between these variables, offering a more nuanced understanding of how
different license types may influence reuse within the context of specific programming
languages.

Additionally, we applied sum contrasts for these two predictors, also known as
effect coding, where each level of the predictor is compared to the overall mean of all
levels. This method allows for a more balanced interpretation of coefficient estimates,
by contrasting each category with the overall mean rather than a specific reference
category. In sum contrasts, the coefficients for all levels, including the intercept,
sum to zero, ensuring that one level’s coefficient is determined by the others, thereby

maintaining balance and enhancing interpretability in the model.

6.5 Results and Discussion

6.5.1 RQ1 - Regression Model
Our Findings

To establish a baseline, we first modeled the probability of reuse based solely on
the project’s license type, without considering other potential factors. This initial
model showed a significant relationship between license type and reuse likelihood.
Specifically, projects with permissive, copyleft, or weak copyleft licenses were more
likely to have their artifacts reused, while those with public domain licenses were less
likely to be reused.

To assess the impact of the variables with significant coefficients, we examine the
odds ratios derived from the logistic regression coefficients. An odds ratio greater
than 1 signifies a positive impact, whereas an odds ratio less than 1 indicates a
negative impact. Figure 6.1 presents the odds ratios along with their corresponding

95% confidence intervals.
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Figure 6.1: Simple Model - Odds Ratios and 95% Confidence Intervals.

Based on these findings, hypothesis Hla is partially supported. Projects with
permissive licenses, such as MIT and BSD, have higher reuse rates; however, those
with public domain licenses do not follow this pattern. Similarly, hypothesis H1b
receives partial support: while restrictive licenses generally exhibit a lower probability
of reuse compared to permissive licenses, they unexpectedly show higher odds of reuse
than public domain licenses.

Recall, this initial model does not account for other potential factors that may
influence reuse. Consequently, while the preliminary results provide valuable insights,
they may be confounded by unconsidered variables. To address this limitation, we
introduce a second model incorporating additional control variables, which allows for
a more precise analysis of the true impact of license type on artifact reuse.

Table 6.3 presents the ANOVA results for this model, showing that all predictors
have highly statistically significant coefficients (p-values close to zero; not surprising
given our sample size), and allowing for a comparison of relative explanatory power
of each variable (the Deviance column). Almost all control variables had the
hypothesized effects, except for burstiness, which seems to be encouraging reuse;
however, its deviance is relatively low. The regression coefficient estimates are also
shown in this table for non-categorical variables?. Note, while a categorical variable
may be significant in the model based on ANOVA results, indicating it contributes

meaningfully, the coefficients for some individual levels of the variable can still be

2The p.value (Pr(> |z|)) for all this variables are close to zero (< 2.2¢716).
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Table 6.3: ANOVA Table and Regression Coefficients

Df Deviance Pr(>Chi) Coefficient

EarliestCommit 1 5,396 < 2.2e 16 5.60e~01
LatestCommit 1 30,987 < 2.2¢ 16 —1.49¢%
CoreAuthors 1 8,143 < 2.2e 16 2.56¢ 01
Forks 1 7994 < 2.2e16 4.05e~%1
Commits 1 23,749 < 2.2¢716 2.57e 1
Files 1 65912 < 2.2¢°16 2.80¢ 0!
AdoptionDelay 1 662 5.75e~146 2.05e 702
Burstiness 1 128 1.42¢=% 6.68¢%2
Language 11 7,710 < 2.2e716 Cat.
License 5 874 = 1.20e 186 Cat.
Language:License 55 1,799 < 22e 16 Cat.

insignificant. This suggests that, although the variable as a whole impacts the
outcome, not every category within it shows a statistically significant effect.

Similarly to the previous model, Figure 6.2 displays the odds ratios and their
corresponding 95% confidence intervals for the significant license variables. When
additional control variables such as programming language and its interaction with
license types are introduced into the model, the results reveal a more nuanced
understanding of how these license types influence software reuse. Significant
results are observed only in specific combinations of license types and programming
languages.

For permissive licenses, Python, C/C++, and JavaScript projects exhibit an
odds ratio greater than 1, indicating an increase in reuse. The positive impact of
permissive licenses is significant only for these three programming languages, while
other languages do not show statistically significant effects.

The first model suggested that public domain licenses are negatively associated
with reuse, and the second model confirms that this effect is significant only for
JavaScript and Ruby, with no notable impact in other languages. This finding

implies that public domain licenses may lack the legal incentives or protections that
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Figure 6.2: Full Model - Odds Ratios and 95% Confidence Intervals.

developers value, making them less attractive for promoting reuse in certain contexts.
Hypothesis H1a is therefore partially supported.

Projects using permissive licenses show increased reuse in Python, C/C++, and
JavaScript, but this effect is not significant in other languages, suggesting that
permissive licenses enhance reuse only in specific environments. Furthermore, public
domain licenses do not generally impact reuse odds, but reduce the likelihood of reuse
in JavaScript and Ruby, contrary to the expectation that more permissive licenses
encourage reuse, and thus in contrast to Hla.

Several factors may contribute to this unexpected result. One possibility is
legal uncertainty; the concept of dedicating works to the public domain is not
consistently recognized across jurisdictions. In some countries, authors cannot fully
waive their copyright, leading to ambiguities that might deter developers from reusing
public domain code. Additionally, the absence of explicit permissions can create
confusion. Although public domain status implies freedom of use, developers and

organizations may prefer licenses that clearly state permissions and limitations, such
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RQ1 Key Findings

1. Permissive licenses have the strongest positive impact on reuse, particularly in
Python, C/C++, and JavaScript projects. (H1a)

2. Public domain licenses show a negative association with reuse, specifically in
Ruby and JavaScript projects. (Hla)

3. Copyleft licenses show mixed results: they are beneficial for reuse in specific
contexts, such as JavaScript, but generally have a negative effect on reuse when
controlling for other factors. (H1b)

4. Weak copyleft licenses reduce reuse only in Rust, C/C++, and Java projects
when other factors are considered. (H1b)

5. The influence of license type on reuse is highly dependent on programming
language, indicating that license effectiveness varies significantly across
different language ecosystems.

as the MIT or BSD licenses, which provide explicit legal reassurances. The perceived
lack of explicit disclaimers or warranties in public domain software might also
make it appear riskier, particularly for commercial use. By contrast, permissive
licenses typically include clauses limiting liability and disclaiming warranties, thereby
offering additional protections. Community trust and familiarity may also
play a significant role. Established permissive licenses are widely recognized and
trusted, whereas public domain licenses may not enjoy the same level of familiarity
or acceptance, leading developers to favor more well-known licensing options.

For copyleft licenses, the overall effect is negative. However, JavaScript projects
under such licenses exhibit an odds ratio greater than 1, suggesting that the effect
of copyleft licenses varies significantly depending on the language. Weak copyleft
licenses also show negative impacts on reuse for JavaScript, Java, C/C++, and Rust
projects. These findings suggest that hypothesis H1b is also partially supported.
Although copyleft licenses generally reduce the probability of reuse, this is not the
case for all programming languages. Moreover, weak copyleft licenses reduce reuse

only in specific languages.
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Implications

A key takeaway is that the choice of license for a project has a substantial impact on
the likelihood of its artifacts being reused. This effect varies across different license
types and programming languages, highlighting nuanced relationships between license
choice, programming language, and reuse behavior. This indicates that developers
and contributors should be mindful of how their choice of license can influence the
adoption and reach of their work.

One of the most unexpected findings is that public domain licenses, designed to
allow free and unrestricted reuse, have a negative effect on reuse. This is concerning
because the intent behind these licenses is to eliminate barriers, yet the data suggest
the opposite. The negative association of public domain licenses with reuse indicates
that the OSS community may need to address this unintended outcome. One way for-
ward is to enhance awareness and education about public domain licensing, clarifying
the legal protections and reuse rights it offers. Clearer guidance on how public domain
licenses differ from other open source licenses, particularly regarding legal clarity and
potential liability, could benefit OSS contributors, especially newcomers. The commu-
nity might also consider providing stronger legal frameworks or support around public
domain licenses to reduce uncertainties and hesitations. Project maintainers may also
reconsider using public domain licenses if their primary goal is to maximize reuse. The
data suggest that permissive licenses may be more effective in promoting reuse.

In conclusion, while the OSS movement encourages reuse and collaboration, these
results show that the choice of license plays a crucial role in determining whether a
project achieves those goals. The community must be attentive to the barriers that
certain licenses, such as public domain, may unintentionally create and take steps to
provide better education, support, and legal frameworks to ensure that the intentions

behind these licenses are effectively realized in practice.
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6.5.2 RQ2 - Noncompliance
Our Findings

As discussed above, we report only the results of our low-sensitivity aggregation here
(i.e., considering the lowest-risk pairs of licenses for a given upstream—downstream
pair of projects). Figures 6.3 and 6.4 summarize our findings for the two flavors of
reuse we consider (complete reuse, with at least one shared blob, and substantial

reuse, with 10 or more blobs).

At least 1 Reused blob Figure 6.3 highlights the top 10 categories of license
combinations between upstream and downstream projects, showcasing the most
frequent pairings. The pie chart illustrates the distribution of project tuples across
three categories: no issues, high-risk potential, and low-risk potential for license
noncompliance.

The results indicate that a significant majority (55%) of upstream-downstream
license combinations fall into the high-risk category. The most common high-risk
scenario occurs when neither the upstream nor downstream projects have a license,
accounting for 605 million project tuples. This creates legal uncertainty regarding
reuse, modification, and distribution rights. Other high-risk combinations within the
top 10 involve cases where one project lacks a license, such as no-license to permissive.
Even when the upstream project has a clear license, the absence of a downstream
license introduces ambiguity and potential legal challenges.

On the positive side, 30% of the tuples present no issues, such as permissive to
permissive combinations, where both upstream and downstream projects are clearly
licensed, minimizing legal risk. Low-risk combinations make up 14%, including cases
like permissive to no-license, which involves some legal uncertainty but is less risky

than high-risk scenarios.
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Figure 6.3: Top 10 License Types - 1 Reused Blob, Low Sensitivity

At least 10 Reused blobs The total number of reuse instances (unique combina-
tions of upstream and downstream projects) drops significantly from 1.816 billion to
212 million after applying the constraint of at least 10 reused blobs—a reduction of
approximately 88%. This sharp decline indicates that the majority of earlier reuse
cases involved fewer than 10 blobs, suggesting that much of the initial reuse was
minimal or partial. This reduction highlights that a significant portion of copy-
based reuse in the open source ecosystem is small-scale or potentially superficial,
involving limited sharing between projects, with fewer instances of deeper, substantial
dependencies. By focusing on reuse instances involving at least 10 reused blobs, the
data now captures more meaningful relationships, wherein downstream projects are
more closely integrated with upstream codebases.

Although the number of high-risk combinations decreases proportionally from
the earlier results, they still account for 39% of the remaining reuse instances (see
Figure 6.4). This indicates that even in cases of more substantial reuse, issues related
to licensing or lack of clear licensing persist. However, the increase in the no-issues
category to 48%, primarily driven by permissive to permissive license reuse, suggests
that when significant reuse occurs, clearer licensing tends to be in place, especially

for permissive licenses.
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Figure 6.4: Top 10 License Types - 10 Reused Blobs, Low Sensitivity

Overall, these findings support our hypothesis H2a and underscore the critical

importance of proper licensing.

Copy-based vs. Dependency-based Reuse The results of comparing reuse
detected via copy-based network and dependency-based network are presented in
Table 6.4.

The results highlight a significant limitation in current dependency detection tools,
showing that the percentage of code reuse detected through declared dependencies
is remarkably low across all categories. Despite analyzing over 57,000 project
combinations, the overall detection rate of code reuse through formal dependency
relationships was only 2.43%. This suggests that traditional methods relying on
package managers, which track declared imports and exports between projects, are

insufficient for capturing most instances of code reuse, supporting our hypothesis

H2b.

Implications

These findings have significant implications for the open-source community, particu-

larly in relation to license compliance and code reuse detection. The results reveal that
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Table 6.4: Reuse Detectable by Dependency Relationship

License Type Sample Size Decl. Dep. Percent
no-license-2-no-license 21,102 499 2.36%
no-license-2-permissive 13,670 346 2.53%
no-license-2-weak-copyleft 6,357 94 1.48%
no-license-2-public-domain 4,107 93 2.26%
copyleft-2-no-license 1,105 48 3.35%
conditional-open-2-conditional-open 1,000 20 2.00%
conditional-open-2-copyleft 1,000 20 2.00%
conditional-open-2-no-license 1,000 40 4.00%
conditional-open-2-weak-copyleft 1,000 18 1.80%
copyleft-2-conditional-open 1,000 19 1.90%
copyleft-2-permissive 1,000 36 3.60%
copyleft-2-public-domain 1,000 36 3.60%
copyleft-2-weak-copyleft 1,000 14 1.40%
no-license-2-conditional-open 1,000 34 3.40%
no-license-2-copyleft 1,000 43 4.30%
weak-copyleft-2-no-license 1,000 36 3.60%
Total 57,341 1,396 2.43%

a majority of upstream-downstream project combinations are classified as high-risk
for potential noncompliance, underscoring a persistent issue in open-source software
development. The high occurrence of high-risk cases, especially in projects with no
license, highlights a potential legal vulnerability that could impact the sustainability
and collaboration within the open-source ecosystem.

This findings also call for more advanced detection techniques that go beyond
traditional dependency analysis. Tools that can detect code reuse through copying
are essential for identifying non-compliance with licensing terms. The low detection
rates across the board demonstrate that current tools are not capable of providing
a complete picture of how code is reused, and more comprehensive approaches are

necessary to ensure effective license compliance monitoring.
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RQ2 Key Findings

1. A significant portion of upstream-downstream project combinations are
classified as high-risk for potential license noncompliance, leading to
considerable legal uncertainties regarding reuse, modification, and distribution
rights. (H2a)

2. The most common high-risk potential noncompliance scenario involves projects
lacking any license, underscoring a legal vulnerability within the open-source
community and highlighting the urgent need for consistent and clear licensing
practices.

3. Dependency tracking is inadequate for detecting most instances of code
reuse, highlighting the need for more granular detection methods capable
of identifying copy-based reuse that would enable more accurate license
compliance monitoring in open-source projects. (H2b)

6.6 Limitations

6.6.1 Internal Validity

Project to License Map

The project to license map (P2L) in WoC relies on detecting license files in
repositories, assuming licenses are always recorded in dedicated files.Nevertheless,
licenses might appear in README or source files, leading to underreporting or
misclassification. This suggests that results should be interpreted cautiously, and
additional manual verification may be needed for a more accurate understanding of

license noncompliance.

License Scope

Assigning a license to an entire OSS project can introduce challenges, as the license
may not uniformly apply to all components. Projects often incorporate third-party
libraries, modules, or contributions that come with their own distinct licenses, which

may conflict with or restrict the applicability of the main project license. Thus, while
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the project may be licensed under a specific open-source framework, that license may

only cover certain parts, with other components subject to different licensing terms.

Dependency-Based Reuse

One limitation in comparing copy-based reuse with dependency-based reuse is that
some projects use dynamic or implicit imports, where dependencies are loaded
at runtime or through unconventional methods that may not be captured by a
straightforward export-import analysis. This can result in certain dependencies,
which package managers can detect, being overlooked, exposing gaps in our approach.
Nonetheless, our methodology is conservative, as we track dependencies over time
rather than focusing solely on the latest version. By excluding any reuse instance that
was detectable through dependencies at any point in the project’s history, we provide
a more thorough view of potential dependency-based reuse. This approach reduces
the risk of missing past dependencies that may have been removed or modified in
subsequent versions, delivering a more inclusive analysis of reuse instances. However,
this conservatism may also lead to attributing reuse to dependencies that no longer

exist, slightly skewing the results toward historical dependency detection.

6.6.2 External Validity
Copy-Based Reuse

While emphasizing copy-based reuse offers valuable insights into license compliance,
we recognize the significant role of dependency-based reuse within the broader reuse
network. Focusing solely on copy-based reuse may overlook certain aspects of how
dependencies are integrated into a project. Conversely, dependency-based reuse can
miss critical instances where code is directly copied between projects, which is equally
crucial in identifying potential noncompliance. Thus, while this work prioritizes copy-

based reuse, it serves to complement—rather than replace—the understanding gained
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from analyzing dependency-based reuse, together providing a more comprehensive

view of compliance.

6.7 Conclusions

Our study shows that the choice of open-source license plays a significant role in
influencing the likelihood of reuse. Permissive licenses consistently encourage reuse
across a variety of programming languages, while copyleft and weak copyleft licenses
exhibit more context-specific effects, sometimes limiting reuse depending on the
language and environment. Despite offering unrestricted reuse, public domain licenses
were linked to a negative impact on reuse, likely due to legal uncertainties. Our
findings also emphasize the importance of detecting copy-based reuse, as traditional
dependency-based approaches often fail to capture the full scope of reuse, especially
when explicit dependencies are not declared. This highlights the need for more
advanced detection methods to improve license compliance monitoring in the open-
source ecosystem. Moreover, projects without clear licenses continue to present
significant legal risks, underscoring the need for more consistent and transparent

licensing practices within the open-source community.
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Hidden Vulnerabilities and
Licensing Risks in LLM
Pre-Training Datasets

Disclosure Statement

A version of this chapter is accepted to be published as Jahanshahi and Mockus
(2025):

Mahmoud Jahanshahi and Audris Mockus. 2025. Cracks in The Stack:
Hidden Vulnerabilities and Licensing Risks in LLM Pre-Training Datasets.
In Proceedings of the second International Workshop on Large Language Models for
Code. (LLM/jCode °25). Just Accepted (January 2025).

This material is included in accordance with ACM’s policies on thesis and
dissertation reuse. (C) 2025 Copyright held by the owner/author(s). Publication
rights licensed to ACM.

Replication package available at: https://zenodo.org/records/14175945

138


https://zenodo.org/records/14175945

7.1 Abstract

A critical part of creating code suggestion systems is the pre-training of Large
Language Models (LLMs) on vast amounts of source code and natural language
text, often of questionable origin, quality, or compliance. This may contribute to
the presence of bugs and vulnerabilities in code generated by LLMs. While efforts to
identify bugs at or after code generation exist, it is preferable to pre-train or fine-tune
LLMs on curated, high-quality, and compliant datasets. The need for vast amounts
of training data necessitates that such curation be automated, minimizing human
intervention.

We propose an automated source code autocuration technique that leverages
the complete version history of open-source software (OSS) projects to improve the
quality of training data. The proposed approach leverages the version history of all
OSS projects to: (1) identify training data samples that have ever been modified,
(2) detect samples that have undergone changes in at least one OSS project, and
(3) pinpoint a subset of samples that include fixes for bugs or vulnerabilities. We
evaluate this method using “The Stack” v2 dataset, comprising almost 600M code
samples, and find that 17% of the code versions in the dataset have newer versions,
with 17% of those representing bug fixes, including 2.36% addressing known CVEs.
The clean, deduplicated version of Stack v2 still includes blobs vulnerable to 6,947
known CVEs. Furthermore, 58% of the blobs in the dataset were never modified
after creation, suggesting they likely represent software with minimal or no use.
Misidentified blob origins present an additional challenge, as they lead to the inclusion
of non-permissively licensed code, raising serious compliance concerns.

By deploying these fixes and addressing compliance issues, the training of new
models can avoid perpetuating buggy code patterns or license violations. We expect
our results to inspire process improvements for automated data curation, a critical
component of Al engineering, with the potential to significantly enhance the quality

and reliability of outputs generated by Al tools.
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7.2 Introduction

Large Language Models (LLMs) are already employed by popular tools such as
GitHub Copilot and have a significant impact on how people interact with computing
resources. LLM code-generation tools appear to increase productivity Ziegler et al.
(2022), are easy to access with little or no cost on popular coding platforms, and
generated code is rapidly spreading (“GitHub Copilot is behind an average of 46%
of a developer’s code” Zhao (2023)). Quality control of this code, however, is
severely lacking in the LLM-based Software Supply Chain (SSC). LLMs are trained
on vast amounts of source code and natural language text that are of questionable
origin and quality. The output generated by LLMs, therefore, often contains bugs,
vulnerabilities, or license violations that are copied or reused to train other LLM
models, thus propagating the problem. Hubinger et al. (2024) showed that LLMs
can introduce vulnerabilities and this behavior is extremely difficult to change via
fine-tuning. It is reasonable to assume that at least part of that buggy output may
be attributed to the buggy files used to train LLMs. While existing approaches
use Al to detect the most common insecure coding patterns Zhao (2023), but many
vulnerabilities do not fit such simple patterns. It is widely accepted that the size
and quality of training corpus are essential for good performance of the models, yet
common curation techniques, such as number of stars or forks, appear ineffective Allal
et al. (2023). Independent of the intended coding tasks, a large body of training data
is necessary for LLMs to be effective. As poor quality training data can reduce the
quality of LLM-based tools, improving the state of art in source code training data
curation is an important task that would impact all downstream efforts. It is worth
noting that source code is often included in training data for natural language models
as well. For example, the natural language collection in Laurencon et al. (2022) has
hundreds of gigabytes of source code and collection described in Gao et al. (2020)
nearly 100GB.
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Previous work found instances of vulnerable or license-violating code in open
source training datasets. This shows that by taking information from version control
systems, it is feasible to identify vulnerable, buggy, or license-violating code and
replace it with fixed versions Reid et al. (2022); Reid and Mockus (2023).

In summary, it is essential to exclude problematic code from LLM training
datasets, or, at least, to flag it as high risk.

The goals of this work is to investigate the quality of the source codes that are used
to train LLMs and to develop automated approaches to improve it. Specifically, we
propose a simple and effective way to identify (and fix) several types of problematic
source code that is used to train LLMs.

In a nutshell, we leverage the fact that a file’s content may undergo numerous
changes over its lifetime, with some of these changes being bug fixes. By identifying
cases where a file in the training data has been modified and updated, we can
recommend these newer versions as replacements for older versions in the training
dataset. In order for this approach to work, we have to go across repository boundaries
and consider versions (and their history) in all public repositories, i.e., Universal
Version History (UVH) Reid and Mockus (2023). World of Code (WoC) research
infrastructure Ma et al. (2019, 2021) provides capabilities to accomplish such an
arduous task as described in Section 7.4.

Our primary contributions are: 1) an approach to identify potentially vulnerable,
buggy, or not heavily used source code in public LLM training datasets; 2) an
approach to identify potential license violations in these datasets; and 3) evaluation
of the approach on the largest public curated code LLM training dataset the Stack
v2 Lozhkov et al. (2024). We also articulate how code LLM’s represent a novel type
of software supply chains and suggest that never-modified code may indicate its low
use and untested quality and that should be taken into account when constructing
training datasets.

In the remainder of the paper Section 7.3 discusses curated training datasets used

for evaluation, relevant key concepts of software supply chains, how LLM-generated

141



coder represents a novel type of software supply chain, and key features of WoC used
in this study. Section 7.4 describes our approach in detail. Section 7.5 presents and

discusses our findings.

7.3 Background

7.3.1 Types of Software Source Code Supply Chains

Software supply chain concept is helpful for assessing risks, as in traditional supply
chains. However, software supply chains have substantially different nature from
traditional supply chains. In particular, three types of software source code' supply
chains have been previously identified Mockus (2019b). The most common, or Type
I SSC is represented by code (runtime) dependencies. For example, an import
statement in Java or include statement in C programming languages. The two
primary risks for downstream projects in this scenario are: insufficient upstream
maintenance, where bugs and vulnerabilities remain unresolved, and overly aggressive
maintenance, where upstream changes disrupt downstream code Xavier et al. (2017).

Type II SSC involves copied code, a common practice in open-source software
where code is shared publicly Jahanshahi et al. (2024b), allowing anyone to copy or
fork it (within licensing requirements). While breaking changes are no longer a risk in
Type II SSC, the absence of upstream maintenance becomes inevitable, as the code
is now maintained within the destination project.

Type III SSC involves knowledge transfer where developers learn procedures
techniques and tools by working in one project and then apply some of what they
learned elsewhere. While learning, in general, is a good thing, some quality practices
or API usage may introduce bugs or vulnerabilities that, if adopted by developers,

are then spread by these developers to other projects.

'We explicitly exclude various ways binary software is delivered as, for example in Solar Winds
hack.
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The current state of the industry in source code SSCs is to capture dependencies
based on package managers (Type I SSCs) and to rely on the “official” directories
such as NVD and package managers to identify the security and licensing attributes.
As was shown in Reid et al. (2022); Reid and Mockus (2023), rampant code copying
enabled and encouraged by OSS results in massive orphan vulnerabilities and licensing

violations that cannot be detected by existing approaches.

7.3.2 The Promise and Challenges of Large Code Datasets

Large-scale code datasets are invaluable for advancing Al-driven code solutions, such
as automated code generation, bug detection, and refactoring. These datasets provide
extensive repositories of programming languages, styles, and structures, enabling
large language models (LLMs) to learn complex coding patterns and generalize
across diverse coding tasks. By leveraging such data, AI models significantly
improve in generating, completing, and correcting code, which supports developers
in accelerating the software development cycle and reducing costs Allamanis et al.
(2018); Lozhkov et al. (2024).

However, maintaining the quality and integrity of these large datasets poses several
challenges, often underexplored in research. Duplication, for instance, can lead to
redundancy, creating biases and reducing model diversity. Version control is another
critical challenge, as datasets sourced from dynamic platforms like GitHub may
frequently change; without careful version tracking, models risk learning outdated or
deprecated practices. Provenance tracking is essential for maintaining the contextual
relevance and reliability of data, allowing users to trace the origins and evolution
of code snippets. Additionally, licensing complexities arise, as open-source code
often comes with a range of permissive and restrictive licenses. Properly handling
these licensing issues is crucial to ensuring lawful usage, especially in commercial

settings Gunasekar et al. (2023).
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LLMs introduce a novel type (Type IV) of Software Supply Chains that manifest
by relationships between the LLM-generated code and the code used to train the
LLM models. LLMSSCs, similar to Type II SSCs, are conceptually copying the code
(including its bugs) in the training data but in a way that obfuscates the origin. The
full scope of risks posed by Type II copy-based SSCs has yet to be studied in depth.

7.3.3 The Stack v2 Dataset

To evaluate our approach we use a large open source dataset intentionally curated for
training code LLMs: the Stack v2 Lozhkov et al. (2024). “The Stack v2 contains over
3B files in 6004 programming and markup languages. The dataset was created as part
of the BigCode Project , an open scientific collaboration working on the responsible
development of Large Language Models for Code (Code LLMs). The Stack serves as
a pre-training dataset for Code LLMs, i.e., code-generating Al systems which enable
the synthesis of programs from natural language descriptions as well as other from
code snippets.”

This dataset is widely adopted in AT and software development due to its extensive
multi-language coverage and permissive licensing, enabling use in both academic and
commercial contexts. The Stack (v2) fosters open collaboration, supporting model
training across diverse coding ecosystems and advancing tools for software automation
and analysis Gunasekar et al. (2023).

In addition to the full dataset, the Stack v2 has several deduplicated versions.
the-stack-v2-dedup is near-deduplicated, the-stack-v2-train-full-ids is based on the
the-stack-v2-dedup dataset but further filtered with heuristics and spanning 600+
programming languages. Finally, the-stack-v2-train-smol-ids is based on the the-
stack-v2-dedup dataset but further filtered with heuristics and spanning 17 program-
ming languages. We evaluate our fixing approach on the full and smol (maximally

deduplicated) datasets?.

2For more details on the dataset and the deduplication process, refer to the Stack v2
documentation: https://huggingface.co/datasets/bigcode/the-stack-v2
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7.3.4 Motivation for This Study

Evaluating large code datasets is essential to address the intricacies of version security
and licensing, which collectively impact the reliability and ethical compliance of large

language models (LLMs) for code.

Security Vulnerabilities and Bugs

The security implications of large datasets are significant, especially in the context of
outdated or vulnerable code. If models are trained on datasets containing undetected
security flaws, these vulnerabilities may persist in model outputs, increasing the risk
of insecure code suggestions. This issue is particularly concerning for code used in
sensitive applications, where even minor security oversights can lead to substantial
risks and exploitation potential. Security-focused dataset evaluation is therefore vital
to prevent models from inadvertently embedding insecure practices into their code
outputs Pearce et al. (2022).

Given the large-scale, open-source nature of The Stack v2 dataset, it is likely to
contain instances of vulnerable and buggy code. This hypothesis (H1) is based on the
prevalence of “orphan vulnerabilities” in open-source projects, as described by Reid
et al. (2022), where vulnerabilities in copied code persist even after they are patched
in the original source. In large datasets aggregated from numerous repositories, code
reuse without consistent patching introduces security risks, as outdated or unpatched

code versions may proliferate across projects, spreading known vulnerabilities further.

e Hypothesis 1 (H1): The Stack v2 dataset is likely to contain instances of
vulnerable and buggy code.

Legal Considerations

Maintaining licensing integrity is fundamental for the lawful and ethical deployment
of code-based AI. The provenance and licensing of code samples in these datasets

must be meticulously tracked to prevent legal risks associated with licensing
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misrepresentation or inaccurate attributions. Open-source projects often involve
significant code reuse, which can lead to fragmented metadata or altered licensing
information as code is copied across projects. Proper licensing ensures that the
models’ outputs respect open-source constraints, which is crucial for both research and
commercial applications. Without rigorous checks, models might generate code based
on improperly licensed data, exposing end-users to compliance issues and potential
litigation. Ensuring that datasets uphold licensing integrity not only fosters ethical Al
but also protects users from unforeseen legal complications Gunasekar et al. (2023).

Due to the prevalence of “copy-based reuse” in open-source development, as
explored by Jahanshahi et al. (2024b), we hypothesize (H2) that The Stack v2 dataset
contains instances of misidentified code origins. While the dataset has metadata
identifying the project from where each source code file was obtained, that file may
have been copied from another project that has a different or even incompatible
license. This form of reuse, where source code is directly copied into new projects,
often results in fragments with altered or lost metadata, which complicates the ability
to accurately trace their provenance. This lack of provenance tracking can lead to legal
and ethical issues in Al applications for code. Without accurate metadata, models
may inadvertently generate code with improper licensing, exposing users to potential
compliance issues. Misidentification of code origins in datasets like The Stack v2 is
particularly risky for industry applications, as it challenges the trustworthiness and

lawful deployment of LLM4Code models in commercial environments.

e Hypothesis 2 (H2): The Stack v2 dataset is likely to contain instances of

misidentified code origins that are prone to license violation.

7.3.5 Contributions

The primary contributions of this paper focus on addressing data quality and

compliance concerns within The Stack v2 dataset. The paper aims to enhance the
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understanding and reliability of large code datasets by providing the following key

contributions.

Assessment of Security and Reliability

We introduce a novel methodology for identifying source code that may be potentially
vulnerable, contain bugs, or exhibit minimal usage in real-world applications. Our
approach uniquely incorporates version control history to track and analyze the
evolution of source code, focusing on identifying newer versions of files that indicate
updates, bug fixes, or refinements over time. By examining commit histories
and versioning patterns, we can detect files that have undergone improvements or
corrections, flagging older versions as potentially vulnerable or buggy. This historical
perspective provides insight into code stability and usage trends, allowing us to

differentiate actively maintained, reliable code from outdated, less robust sections.

Analysis of Code Provenance and Licensing Accuracy

We conduct a detailed examination of code provenance to evaluate licensing accuracy
and the origins of code snippets within the dataset. By tracking the source and
licensing status of code entries, we provide a comprehensive assessment of compliance
with open-source licensing requirements. This contribution is particularly important

for models deployed in industry, where legal and ethical use of data must be assured.

Evaluation on Large-Scale Code Dataset

To validate the effectiveness of our approach, we perform a comprehensive evaluation
on the largest publicly curated code LLM training dataset, Stack v2. This dataset
serves as an ideal benchmark due to its scale and diversity. By applying our
methodology to Stack v2, we can assess the robustness of our techniques in
identifying potentially vulnerable or outdated code segments, accurately tracking

version histories, and verifying licensing compliance across a large and varied dataset.
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This evaluation establishes the applicability and scalability of our contributions to
real-world, large-scale code datasets, reinforcing the value of our work in supporting

the development of secure, high-integrity LLM training corpora.

7.4 Methodology

To address big data-related aspects of the proposed work, we leverage WoC research
infrastructure Ma et al. (2019, 2021) for open source version control data. This
data includes a vast majority of public open source projects and provides access
to petabytes of data that includes versions of source code, information on time,
authorship, and exact changes made to the source code over the entire activity history

of most participants in OSS.

7.4.1 Key Concepts

The proposed method for identifying issues in training data leverages unique
capabilities of WoC. In particular, WoC’s ability to cross-reference and track the
history of code versions across nearly all public repositories, along with its curated
data that addresses complex challenges like repository deforking Mockus et al. (2020)
and author ID aliasing Fry et al. (2020), makes this approach feasible.

We use a simple example to demonstrate the tracing and cross-referencing
capabilities of WoC. Suppose we take a single sample b (version or, in git terms,
blob) of source code from any training (or test) data. We can calculate git SHA-1 3
for this sample. All further calculations use git SHA-1 and do not require the content.

For a blob b to materialize in a version control repository, it has to be created by
a commit c¢. Git commits include the time of the commit, commit message, SHA-1 of

the parent commit(s) and SHA-1 of the tree (folder). WoC, by comparing the trees’

3Git SHA-1 is simply a SHA-1 calculated on the string (representing the content) with prepended
string “blob SIZE\0” where SIZE is the length of the content.
4WoC contains over 20B blobs.
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of the commit and its parent(s) determines all the modifications to the project done
by the commit. Specifically, in case any of the project’s files are modified, it extracts
the tuple (b,, b,,,) representing the old and the new version of the file. These pairs are
associated with the commit and its other attributes, like time, author and commit
message.

Suppose there is a commit, ¢;(b,, by,), which addresses a vulnerability v in project
P. This commit, ¢, modifies a file f at time ¢, where the original version of the
file is represented by the blob b, and the modified version by b,,. WoC’s cross-
referencing allows us to identify all repositories containing b, or b,,, all relevant
commits, their parent and child commits, and the authors and projects associated
with these commits.

Typically, we need a repository and a commit to identify what files were changed,
their content before and after the change, as well as the parent commit. By collecting
and cross-referencing nearly all open source data, WoC allows us not only to go
forward in version history (see child commits), but also to identify all commits that
either created or modified a particular version of the file. To identify problems with
the LLM training data, we will first match it to blobs or commits in WoC. Both
the Stack and the Stack v2 contain versions of the files (blobs) and their git SHA-1
digests. We, therefore, just need the list of SHA-1 digests to match them to blobs
in WoC. We further assume that if there exists at least one commit that modifies
bo, and its commit log message contains keywords (described below) indicating that
it is a fix, then that blob is buggy. Similarly, if the commit indicates that it fixes a

vulnerability, we assume that modified blob contains vulnerability.

7.4.2 Identifying Potential Noncompliance

The Stack dataset provides information on repositories and their identified licenses for
all blobs. Since code reuse through copying is common among developers Jahanshahi

et al. (2024b), accurately tracing the originating projects for each blob can be
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challenging. WoC addresses this by offering a map Jahanshahi and Mockus (2024)
that, for blobs found in multiple projects, sorts them by the commit time of each
blob’s creation, allowing us to identify its first occurrence and the repository where
it was initially committed. By comparing this origin information from WoC with the
data in the Stack, we can verify whether the originating repository of each blob has
been accurately identified.

If the origin identified by WoC does not match the origin listed in the Stack data,
we then analyze the licenses associated with both the WoC-identified originating
repository and those detected by the Stack. Using WoC’s license map Jahanshahi
et al. (2024a), we compare this information with the Stack’s license data to identify

potential instances of license noncompliance.

7.4.3 Sampling

We used a Elgth sample for certain quantitative analyses to balance computational
feasibility with representativeness. The sampling was based on SHA-1 hashes
of the blobs and commits, which ensures that the selection process is effectively
random. This approach maintains statistical robustness while significantly reducing

the computational overhead of processing the entire dataset.

7.5 Results and Discussions

7.5.1 Hidden Vulnerabilities

As described in Section 7.4, we first extract git SHA-1 for all blobs in the Stack v2
(full) and the-stack-v2-train-smol-ids (smol) datasets. The former has 582,933,549
and the latter has 87,175,702 unique blobs. The total number of blobs in WoC
version V3 (extracted at about the same time as the Stack v2) has over 26B blobs, or
almost 45 times more blobs than the full version and 300 times more than the small

deduplicated version.
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Starting from these two lists of blobs® we first obtained two maps to commits:
the first map links blobs to commits creating the blob (including the previous version
of the file), while the second map links to commits that modified the file, thereby
creating a new blob, as described in the previous section. Not all blobs could be
mapped to commits, as a small fraction did not appear in either map. This could
be due to certain code versions being created without a publicly accessible version
history or missing corresponding commits or trees in WoC.

Table 7.1 summarizes the blob counts for two evaluation datasets, based on a

L

155 th random sample determined by the SHA-1 hash of each blob. These counts can

be extrapolated to the full dataset by multiplying by 128.

From Table 7.1, we observe that approximately 2.5% of the blobs could not be
linked to any commits. Among the remaining blobs, 62% and 55% represent files that
were created without preceding blobs, i.e., they are the initial versions. Of these, only
5.5% and 4.6% had a newer version, meaning the majority were created but never
modified. Since the first version of frequently executed source code is rarely error-free,
this lack of updates suggests the code was likely not used in practice, raising concerns
about its overall quality.

Furthermore 17.3% and 10.2% of the blobs have a subsequent version(s). These
versions are likely fixing existing bugs, vulnerabilities, make code compatible with
newer versions of libraries, or add new functionality. Since the next version of the
code is known, it would make sense to replace the versions of the training data with
updated versions.

We further analyze the blobs that have been updated. Using the methodology
described in Mockus and Votta (2000), we identify likely bug fixes by searching

®The second list had only 26% overlap with the first list instead of being a strict subset of the
first.
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Table 7.1: Counts in the blob sample

full smol
count % (row)  count % (row)
1 Total 4,553,119 680,917
2 Missing 115,239 2.53 (1) 16,533 2.42 (1)
3 Have an old version | 1,622,641 35.63 (1) 287,412 42.20 (1)

First version 2,813,171 61.78 (1) 376,719 55.32 (1)
No new version 2,658,805 94.51 (4) 359,380 95.39 (4)
) )

Have a new version
Found new versions

788,059 17.30 (1) 69,346 10.18 (1
1,462,363 111,453

~N O | Tt b~

for terms fix, bug, issue, patch, error, resolve, correct, problem, and their common
variations, as well as cve in the commit messages®.

The results are shown in Table 7.2. It summarizes the counts for two evaluation
datasets, based on a %th random sample determined by the SHA-1 hash of each
commit that introduces a new version for a blob in the Stack dataset. These counts
similarly can be extrapolated to the full dataset by multiplying by 128.

Among the 5,068,635 blobs with newer versions, we find that 17.31% and 14.36%
of the blobs were updated by a fix commit. If we extrapolate the results, we see that
in total, 101M blobs in the current full Stack v2 database (representing 17.30% of
all blobs in it) can be updated to newer versions and 17.31% of these new versions
are bug fixes. For the smol dataset, we have 9M (representing 10.18% of all blobs in
it) that can be updated to newer versions and 14.36% of those are bug fixes. While

deduplication reduced the proportion of buggy samples, millions of them still remain

and can be easily fixed.

bgrep -iwE ‘fix | fixes | fixing | bug | bugs | issue | issues | patch | patches
| error | errors | resolve | resolved | resolving | correct | corrects | corrected
| correcting | problem | problems | debug | debugs | debugged | debugging | cve’
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Table 7.2: Counts in the new version commit sample

full smol
count % (row) count % (row)
1 Commits 835,699 104,782
2 Blobs 5,068,635 279,652
3  New versions 5,657,384 307,362
4 Fix commits 137,001 16.40 (1) 13,628 13.00 (1)
5  Fix blobs 877,811 17.31 (2) 40,168 14.36 (2)
6  Fix new versions | 935,587 16.53 (3) 41,222 13.41 (3)
7 CVE commits 845  0.61 (4) 83  0.60 (4)
8  CVE blobs 20,765 2.36 (5) 756  1.88 (5)
9  CVE new versions | 20,561  2.19 (6) 809  1.96 (6)
10 Distinct CVEs 851 78

Table 7.3: CVE counts in complete smol dataset

‘ CVE commits CVE blobs Distinct CVEs
Count | 11,907 19,944 6,947

Finally, we checked how many code sample have fixes to known vulnerabilities. To
do that we searched for the regular expression representing CVE “cve-[0-9]+-[0-9]4"
and found that 2.36% and 1.88% of the fixes in our sample relate to a known CVE.

Due to the important nature of known vulnerabilities, we further analyzed the
complete smol dataset—that is supposed to be most reliable version of the Stack
v2—to find blobs that have a newer version with fixes to known CVEs. The results
are shown in Table 7.3. We found that 19,944 blobs in the smol dataset have newer
versions that fixing a known CVE. These samples were changed by 11,907 commits
that mentioned 6,947 distinct CVEs in their commit message.

In summary, despite careful curation and employment of sophisticated heuristics,
even the clean version of the Stack v2 dataset contains millions of unfixed versions
of the code, including thousands of unfixed vulnerabilities that supports our first

hypothesis (H1).
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Key Findings 1
1. 17.30% and 10.18% of blobs in the full and smol datastes, respectively,

have newer versions, out of which 17.31% and 14.36% are bug fixes.

2. 61.78% and 55.32% of blobs are the first version created, out of which
94.51% and 95.39% have no newer versions, meaning they were created

but never modified, suggesting low quality.

3. There are 19,944 blobs in the clean and deduplicated version of the Stack
v2 (smol) that have a newer version were a known security vulnerability

is being fixed.

4. In total, 6,947 known CVEs has been found in the smol dataset.

7.5.2 Potential Noncompliance

The Stack v2 dataset consists of code that is either licensed under permissive terms
or lacks a specified license. To address potential licensing concerns, the Stack v2
allows authors to opt out of inclusion in the dataset. It is important to note that
code without a license is distinct from unlicensed code. From a copyright perspective,
code without a license defaults to “all rights reserved” U.S. Copyright Office (2021),
which raises significant concerns about the inclusion of such code in this dataset.

As detailed in Section 7.4.2, we analyzed blobs within the dataset that were reused
across multiple OSS projects, as identified through WoC Jahanshahi and Mockus
(2024). For each blob, we determined its originating project—the project with the
earliest commit timestamp containing that blob—and cross-referenced it with the
corresponding project in the Stack dataset. The results are shown in Table 7.4.

The results indicate that 15.49% and 11.30% of blobs were reused at least once.
Furthermore, in 67.42% and 61.78% of instances, the originating projects identified
by the Stack dataset differ from those identified by WoC. This highlights the inherent

complexity of tracing the origins of code reused through copy-and-paste. WoC'’s
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Table 7.4: Reused blobs and their origin

full smol
count % (row) count % (row)
Total 582,933,549 87,175,702

Reused | 90,303,809 15.49 (1) 9,848,987 11.30 (1)

Same | 29.432,636 32.59 (2) 3,764,702 38.22 (2)
Different | 60,871,173 67.41 (2) 6,084,285 61.78 (2)

[IEOGUI I NOR

Table 7.5: Reused blobs with different origins and their licenses

full smol
Stack v2 WoC count % (row) count % (row)
Different Origin ‘ 60,871,173 6,084,285
Same License 38,410,728 63.10 (1) 4,418,289 72.62 (1)

no license  no license 26,604,621  69.26 (2) 3,269,149  73.99 (2)
permissive permissive | 11,806,107  30.74 (2) 1,149,140  26.01 (2)

Different License | 22,460,445 36.90 (1) 1,665,996 27.38 (1)
permissive no license 45.67 (5) 43.33 (5)
no license  permissive 9,309,959  41.45 (5) 658,085  39.50 (5)
no license  restrictive 1,868,500 8.32 (5) 193,358  11.61 (5)
permissive restrictive 1,024,095 4.56 (5) 92,633 5.56 (5)

© 00 ~JO Ol | = Wi |

ability to perform such identification stems from its comprehensive coverage of nearly
all open-source projects and their version histories.

Since cases with misidentified origins present a potential risk of license noncom-
pliance, we conducted a further investigation into the blobs with differing identified
origins. The detailed results of this analysis are presented in Table 7.5.

The results reveal that 36.90% and 27.38% of the blobs with misidentified origins
have licenses that differ from those identified in the Stack dataset. These discrepancies
fall into four distinct categories. In the first case, the Stack identifies the license as
permissive, while WoC identifies no license. In the second, the Stack identifies no
license, but WoC identifies a permissive license. The third case involves the Stack

identifying no license, while WoC identifies a restrictive license. Finally, in the fourth
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case, the Stack identifies a permissive license, but WoC identifies a restrictive license.
Among these, the second scenario does not pose a compliance risk and may even
be advantageous, given the problematic nature of reusing code without a license, as
previously discussed. However, the first scenario still raises some concerns. The third
and fourth scenarios are particularly concerning as they indicate a high risk of license
noncompliance due to the blobs originating from projects with restrictive licenses.
In summary, our analysis reveals that even the smaller version of the Stack dataset
contains hundreds of thousands of blobs originating from projects with restrictive
licenses, raising significant legal compliance concerns for any LLM trained on this

dataset. These findings provide strong support for our second hypothesis (H2).

Key Findings 2

1. 15.49% and 11.30% of blobs in the full and smol datasets, respectively,
have been reused at least once. Among these, 64.41% and 61.78% have
origins that were misidentified.

2. 36.90% and 27.38% of blobs with misidentified origins have licenses that
differ from those identified in the dataset.

3. 12.88% and 17.17% of blobs with differing licenses are subject to a
restrictive license, presenting a significant risk of noncompliance.

7.6 Limitations

7.6.1 Internal Validity
Impact of Buggy Code Removal on Model Outputs

Eliminating all buggy code from pre-training or fine-tuning datasets does not
guarantee that the resulting LLM will generate bug-free code. However, it is
reasonable to assume that some generated code may replicate buggy patterns observed

in the training data. Therefore, removing bugs from the training data, especially
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through a low-cost approach like ours, is a sensible step toward improving the model’s

output quality.

WoC Dataset Coverage

Some code may originate outside public version control systems or may simply not be
included in WoC'’s collection. However, as demonstrated with the Stack v2 dataset,
only 2.5% of blobs could not be linked to commits already present in WoC, indicating

that this is a relatively minor issue.

Blob Updates and Quality

While updating blobs to newer versions eliminates known bugs, it can occasionally
introduce new and unknown bugs. However, in most projects, only a small proportion
of bug fixes result in new issues or fail to address the intended bugs. Consequently,

applying fixes generally enhances the overall quality of the training data.

Rebasing and Metadata Loss

Our approach relies on git SHA-1 hashes to track blobs, which ensures that content-
based identification is robust to rebasing. However, rebasing may obscure certain
metadata, such as precise commit lineage, which could limit the ability to fully trace

the historical context of some blobs.

Commit Keyword Usage for Fix Identification

Not all commits containing the keywords we used represent bug fixes, nor do all bug
fixes include these keywords in their commit messages. Despite this, applying all
changes, not just those identified as fixes, is likely necessary. These keywords and
similar ones have been widely used in prior research to identify changes related to
bug fixes. In our validation of 20 randomly selected commits, only three (15%) were

found not to be clearly bug fixes.
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Reliability of CVE Detection

Our method successfully identified thousands of CVEs in the Stack v2 dataset,
leveraging commit messages as a primary indicator. However, this approach relies
on the presence of explicit references to CVEs in commit messages, which may
not comprehensively capture all vulnerabilities. For instance, CVEs that were not
documented in commit messages or introduced through transitive dependencies might
be missed. Future work could address this limitation by conducting a manual review
of a representative sample or validating the method against additional datasets to

evaluate recall more comprehensively.

7.6.2 Construct Validity
Impact of Dataset Vulnerabilities on Model Outputs

This study assumes that vulnerabilities and flaws in training datasets may influence
the quality and security of model outputs. While this assumption aligns with
logical inference and prior research on LLM behavior, direct empirical validation
of this relationship is currently lacking and represents an important avenue for future

research.

Never-Modified Code Assumption

While we suggest that never-modified code may indicate low use or untested quality,
this is based on logical inference rather than direct empirical evidence. Future studies
are needed to validate whether unmodified code consistently correlates with lower

reliability or usability in practice.

Blob Origin Identification

Identifying the origin of a blob is not always possible, particularly for blobs that did

not originate in open-source projects. Accurate identification requires comprehensive
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access to all project data. However, the extensive coverage provided by WoC

significantly reduces this risk.

License Applicability Assumption

The licensing assumption for a blob is based on the identified license of the project
from which it originated. However, not all files within a project necessarily fall under

the project’s overarching license, as some files may have distinct individual licenses.

7.6.3 External Validity
New Bugs and Iterative Updates

Even if all known bugs are addressed at time ¢, new bugs will inevitably be discovered
at time t 4+ 1. Therefore, regular updates are necessary. Fortunately, the approach
outlined here can be automated, allowing it to be efficiently applied to each new

version of the WoC dataset.

Updating to Latest Versions

The updated version of a blob may not always represent the latest available version.
As a result, the process may need to be repeated iteratively until the most recent fix
is applied. The median timestamp of the commits updating blobs was June 2020,
indicating that these updates were available well before the creation of the Stack v2

dataset in 2024.

7.7 Conclusions

Processes to ensure provenance, security, and compliance in SSCs are essential. This
project sets the stage for future work on the curating LLM training data and provide

several insights and interventions that can improve on the current state of the art.
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Several notable observations emerge from our analysis. First, the largest open-
source training dataset, Stack v2, contains only a small fraction of all publicly
available source code versions. These datasets could be significantly enhanced
by incorporating intelligently selected data from comprehensive sources like WoC.
Second, between 10% and 20% of the versions have updates, even though the WoC
dataset version V3 is contemporaneous with Stack v2. Third, a substantial portion
of the training data includes files with known bug fixes. While newer versions may
incorporate updated APIs or additional features, applying these bug fixes is crucial to
prevent LLMs from being trained on buggy code. Fourth, such fixes can be leveraged
to train or align LLMs that specialize in generating changes or fixes. Fifth, training
datasets should prioritize heavily or moderately modified code, which often has fewer
bugs, rather than relying heavily on pristine, first-version code that dominates many
existing datasets. Finally, misidentified code origins have resulted in non-permissive
code being included in these datasets, raising compliance concerns.

Beyond improving the curation practices for LLM training data, this work also
introduces the concept of the LLM supply chain, highlighting its similarities to and
differences from traditional software supply chains.

While our primary focus has been on data curation for code LLMs, the insights

generalize to any scenario involving version-controlled data.
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Chapter 8

Conclusions & Future Work

8.1 Summary of Findings

This dissertation has systematically investigated copy-based reuse in Open Source
Software (OSS) supply chains, shedding light on its prevalence, motivations, and
broader implications. The findings demonstrate that while copy-based reuse is a
common practice among developers, its unregulated nature leads to legal, security,
and maintainability risks.

The first part of the dissertation provided a foundation for understanding copy-

based reuse:

e Chapter 2 presented the methodology for dataset construction, involving large-
scale data collection and the development of heuristics to detect copy-based
reuse. This dataset serves as a crucial resource for further empirical studies in

this domain.

e Chapter 3 analyzed reuse patterns, showing that copy-based reuse is widespread
but unevenly distributed, often influenced by project size, programming
language, and licensing conditions. The chapter also identified recurring
clusters of reused code, including cases where modifications introduce security

vulnerabilities.
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e Chapter 4 examined the developer perspective, revealing that many practi-
tioners engage in copy-based reuse for practical reasons such as performance
optimization and ease of integration, while others are unaware of the legal and

security risks associated with this practice.

The second part of the dissertation applied the detection method to real-world

challenges:

e Chapter 5 explored its implications for license detection in OSS projects,
demonstrating how license inconsistencies arise from untracked copy-based

reuse.

e Chapter 6 investigated noncompliance issues and their consequences, showing
that projects with copied code frequently violate original licensing terms, leading

to potential legal disputes and forced re-licensing.

e Chapter 7 extended the method to machine learning, identifying noncompliant
and vulnerable code in Large Language Model (LLM) pretraining datasets,

underscoring an overlooked risk in Al development.

8.2 Implications

8.2.1 For Developers

Copy-based reuse enables developers to save time and effort by leveraging existing
code. However, it introduces risks such as maintenance fragmentation, security
vulnerabilities, and outdated dependencies. To address these challenges, developers
should adopt tools and practices to track reused code, ensure compliance with
licensing requirements, and mitigate risks associated with unverified code quality.
Fostering a practice of systematically reviewing and documenting reused code not

only enhances its reliability and maintainability, but also contributes to the overall
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sustainability of software projects. Additionally, staying informed about updates
to reused code and integrating these updates promptly can further reduce risks

associated with outdated or insecure components.

8.2.2 For Businesses

Businesses that rely on open source software must proactively address the inherent
risks of copy-based reuse, including security vulnerabilities and potential non-
compliance with licensing terms. Investing in robust tools for tracking and
maintaining reused code is critical to safeguarding the software supply chain. This
effort should encompass implementing workflows for regularly updating and reviewing
reused components.

Moreover, businesses should actively support smaller open source projects that
provide valuable code contributions. Such support not only enhances the quality and
reliability of business-critical software, but also fosters goodwill and collaboration
within the open source community. By taking these steps, businesses can effectively

mitigate risks while strengthening the ecosystem upon which they rely.

8.2.3 For the Open Source Community

The open source community plays an important role in ensuring the safe and
effective reuse of code. By promoting best practices for ethical and secure reuse,
such as adopting standardized licensing and improving quality benchmarks, the
community can minimize risks and build trust in shared resources. Equally important
is supporting small and medium-sized projects that contribute significantly to the
reusable code base. Providing mentorship, funding, and collaboration opportunities
can bolster the overall open source ecosystem, fostering innovation and cooperation
across projects.

Additionally, establishing centralized repositories or resources that facilitate

traceability and offer detailed metadata on provenance, authorship, and licensing can
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streamline the reuse process and mitigate associated risks. These efforts collectively

enhance the reliability, sustainability, and scalability of open source software.

8.2.4 For Researchers and Educators

Researchers have a unique opportunity to investigate finer-grained reuse patterns,
such as instances involving slight modifications or partial reuse, to better understand
the factors influencing reuse and its long-term impact on software quality and security.
Such insights can guide the development of tools and methodologies that promote safe
and effective reuse practices.

Educators should integrate lessons on ethical reuse practices, licensing compliance,
and dependency management into software engineering curricula. By leveraging real-
world case studies and addressing practical challenges, such as balancing development
speed with security concerns, educators can equip future developers to navigate the
complexities of software reuse responsibly. This approach will help ensure that the
next generation of software professionals actively supports the sustainability and

growth of open source ecosystems.

8.2.5 For OSS Platform Maintainers

Platforms like GitHub and GitLab are well-positioned to enhance practices surround-
ing copy-based reuse. Improving traceability mechanisms to preserve provenance, au-
thorship, and licensing metadata is essential for minimizing risks such as unintentional
license violations and outdated dependencies. Integrating features for automated
detection of license conflicts, dependency vulnerabilities, and changes in reused code
can further empower developers to manage their projects efficiently and securely.
Additionally, platforms can offer educational resources and in-platform guidance
to encourage best practices for reuse and compliance. By fostering a culture of
informed and collaborative reuse, platform maintainers can contribute significantly

to the long-term sustainability and resilience of the open source ecosystem.
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8.3 Future Work

8.3.1 Code-Snippet Granularity

We discussed in methodology section that going to a finer granularity than blob-level
to detect code reuse is not practically feasible. Nevertheless, there are approaches
that can make this a relatively more tractable problem. Specifically, hashing the
abstract syntax tree (AST) for each code snippet (such as classes or functions) in a
blob and mapping blobs to these hashes could potentially make finer-grained code
reuse detection more feasible.

Assuming an average of k code snippets for each of the 16 billion blobs, the parsing
and hashing operation has a complexity of O(n), resulting in O(16 x 10° x k). We can
then perform a self-join on the created map of blob to syntax tree hash (b2AST) using
the AST hash as the key. The self-join complexity depends on the number of unique
hashes and their distribution. In the worst case, if every blob had unique hashes,
the join operation would approach O((16 x 10° x k)?). However, the join complexity
would typically be significantly less if there are many common hashes. A more realistic
estimate assumes that the number of unique AST hashes h is much smaller than the
total number of entries in the b2AST map, making the join complexity closer to
O(h x 16 x 10° x k). This join, although potentially large, can be more feasible than
pairwise comparisons of entire blobs due to the more efficient handling of common
hashes.

By examining code reuse at the granularity of code snippets, we could potentially
uncover a far more intricate network of reuse. This approach might reveal patterns
and practices that are not noticeable when looking solely at whole-file or blob-level
reuse. Although this increased complexity is challenging to manage, it offers valuable
opportunities for a more comprehensive analysis of reuse Jahanshahi and Mockus

(2024).
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8.3.2 Dependency-Based Reuse

In this work, we aimed to demonstrate the prevalence and importance of copy-based
reuse. To gain a comprehensive understanding of code reuse, it is important to
analyze both copy-based and dependency-based reuse. Each type of reuse reveals
different aspects of how software developers leverage existing code in their projects.
By studying them side by side, we can paint a more complete picture of the extent
and nuances of reuse in software development. Ignoring one in favor of the other

would provide an incomplete narrative Jahanshahi and Mockus (2024).

8.3.3 Upstream Repository

As highlighted in the limitations section, we currently lack precise knowledge about
the source from which a repository reuses a file. We tend to assume it is from the
originating repository in all instances of copying. However, this assumption may not
capture the real-world complexity of reuse. To enhance our understanding of how
developers identify suitable repositories for reuse, we could potentially leverage meta-
heuristic algorithms or artificial intelligence techniques. These advanced methods
might enable us to predict the actual source of reused artifacts in each instance of

copying with greater accuracy Jahanshahi and Mockus (2024).

8.3.4 Open Source Software Supply Chain Network

Directed Acyclic Graphs (DAGs) have been instrumental in clone detection and
reuse literature due to their ability to model and analyze complex relationships
and dependencies between various software components. In the context of copy-
based reuse, the dataset created using the World of Code (WoC)! infrastructure can
be leveraged to construct DAGs that represent the flow and reuse across different

repositories.

For more information about how to access this data, please visit: https://github.com/
woc-hack/tutorial.
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The dataset’s detailed tracking of blob copies, including their origins and
destinations, provides a rich source of data to map these relationships accurately.
By drawing DAGs, researchers can visualize and analyze the propagation of reused
blobs, identifying critical nodes (projects or blobs) that play a central role in the
reuse network. This visualization helps in understanding the structure and dynamics
of reuse, highlighting patterns such as the most reused blobs, the central projects
in the reuse network, and potential vulnerabilities or licensing issues propagating
through these reused blobs.

DAGs can reveal how reuse spreads across projects, helping to identify which
projects are the primary sources of reusable blobs and how code flows between
different projects. By mapping out the reuse network, it is possible to pinpoint
critical points where vulnerabilities or licensing issues could propagate, allowing for
targeted interventions to mitigate these risks. Understanding the reuse network also
aids in developing better tools and practices for managing code quality and ensuring
that reused code is maintained and updated consistently across all projects that use
it.

Studies on large-scale clone detection such as Sajnani et al. (2016) and Koschke
(2007) provide foundational methodologies for leveraging DAGs in these contexts.
These methodologies can be adapted and extended using our dataset to enhance the

understanding of copy-based reuse in open source software development.

8.3.5 Security Vulnerability Detection Tools

Reused code can propagate vulnerabilities across multiple projects Reid et al. (2022).
For instance, if a security flaw exists in a reused blob, it can potentially affect
all projects that include this blob. Analyzing the reuse patterns can help identify
critical points where vulnerabilities might spread and allow for proactive mitigation
measures. There have been notable incidents where widespread code reuse led to

security breaches. For example, the Heartbleed bug in OpenSSL had far-reaching
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impacts due to the extensive reuse of the affected code across numerous projects.
Future research can focus on developing automated tools that scan reused code for
known vulnerabilities and suggest patches. This proactive approach can enhance the

security posture of software systems.

8.3.6 Compliance Detection Tools

Reused code may carry licensing obligations that need to be respected. Failure to
comply with these obligations can lead to legal disputes and financial penalties.
By understanding reuse patterns, organizations can ensure they meet licensing
requirements. There have been instances where companies faced legal challenges due
to improper reuse of code with restrictive licenses. For example, using GPL-licensed
code in a proprietary software without complying with GPL terms has led to lawsuits.
Developing tools that automatically check for license compliance when code is reused
can help organizations avoid legal pitfalls. These tools can flag potential issues and

provide guidance on how to resolve them.

8.3.7 Survey

Surveying projects’ owners to verify our noncompliance alarm accuracy might also

prove useful especially for research purposes.

8.3.8 Code Quality Enhancement Tools

Reused code may not always meet the quality standards of the adopting project.
Ensuring that reused code adheres to best practices and coding standards is essential
for maintaining overall code quality. Poorly written code can lead to maintenance
challenges and degraded performance in adopting projects. Future work can focus
on creating tools that assess the quality of reused code and suggest improvements.
These tools can analyze code for adherence to coding standards, detect code smells,

and recommend refactoring.
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8.3.9 Package Managers

Developing package managers tailored for different programming languages and
communities can be highly beneficial. These managers can offer more relevant and
effective support for managing code reuse in specific environments. Additionally,
enhancing existing package managers with features such as reuse tracking, version
control, and automated updates can improve development efficiency and reduce the

associated risks of code reuse.

8.3.10 Awutocuration Tool for LLM pretraining Datasets

A promising direction for future work is the development of automated curation tools
specifically designed to enhance the quality of datasets used for pre-training large
language models (LLMs) for code, such as Stack v2. Building on the cost-efficient
approach introduced in this paper, these tools could automatically identify and apply
patches for known fixes or vulnerabilities, ensuring that the datasets include secure
and reliable code. They could also locate and update blobs to their latest versions,
minimizing the inclusion of outdated or buggy code. Furthermore, the tools could
enhance license compliance by automatically detecting and removing code with non-
permissive licenses, ensuring that only code with appropriate licensing is included in
the dataset. The feasibility of such automation is demonstrated by the scalability and
efficiency of our approach in handling large-scale datasets. By automating these tasks,
the proposed tools would streamline the iterative updates required for maintaining
high-quality training data, ensuring practicality and cost-effectiveness in preparing

datasets for LLM pre-training.

8.3.11 Community Engagement

Engaging with open source communities to develop tools and practices that address
the unique needs of different ecosystems, and collaborating with these communities,

can ensure widespread adoption and effectiveness. Continuously gathering user
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feedback and iterating on the tools to enhance their functionality and usability is
also important. This iterative process helps create robust and reliable tools that

meet the evolving needs of software developers.

8.4 Conclusions

This dissertation has provided an in-depth examination of copy-based reuse in open
source software (OSS), exploring its prevalence, motivations, and risks across a
vast ecosystem of projects. By leveraging the extensive World of Code (WoC)
infrastructure and integrating insights from developer surveys, our work sheds new
light on how and why code is replicated and adapted, and how these practices impact
the legal, security, and maintainability dimensions of software.

The findings reveal that copy-based reuse is remarkably common. While it can
offer considerable efficiency benefits—reducing development time, facilitating rapid
prototyping, and fostering collaboration—it also presents significant unregulated
risks. Our large-scale analysis confirms that a substantial fraction of OSS projects
contain reused blobs, often without clear provenance or licensing metadata, creating
uncertainty for both developers and organizations. Furthermore, this work under-
scores how license noncompliance and security vulnerabilities can propagate through
the supply chain unnoticed, potentially jeopardizing entire ecosystems that rely on
shared code.

Across the chapters, several recurrent themes and insights emerged:

1. Prevalence and Patterns of Copy-Based Reuse. We showed that reuse
varies by programming language, project size, and license type, indicating a
complex landscape of developer habits and community norms. Importantly,
binary blob reuse appears to be more prevalent than is often assumed,

emphasizing the need for tools and practices that handle diverse file formats.
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2. Developer Motivations and Perspectives. The developer survey revealed
that practical considerations—such as ease of integration and performance
optimizations—often override concerns about licensing and security. At the
same time, many creators explicitly welcome reuse, consistent with an ethos
of open collaboration. This nuanced view reinforces the idea that developers
frequently operate under time pressures and knowledge gaps, rather than

intentional disregard for legal and security best practices.

3. Legal and Licensing Implications. Our analysis of licensing patterns
demonstrated how permissive licenses generally facilitate reuse, while more
restrictive licenses limit it in certain contexts. However, the negative or unclear
impact of public domain licensing indicates that ambiguous legal contexts
can deter reuse, highlighting the need for more consistent and transparent
licensing standards. This work also evidenced how reliance on dependency-
based detection alone can miss substantial portions of copy-based reuse, leading

to hidden legal risks.

4. Security and Compliance in Supply Chains. Chapters focusing on
noncompliance and vulnerabilities revealed how projects that incorporate copied
code can inadvertently carry forward bugs or violate license terms, leaving them
exposed to legal or reputational harm. Even more critically, when vulnerabilities
reside in widely reused blobs, they may compromise entire ecosystems. The
consequences extend to machine learning (ML) and Large Language Model
(LLM) pretraining datasets, where outdated or insecure code can pollute

training corpora.

5. Implications for OSS Platforms, Businesses, and the Community.
Given the central role of platforms like GitHub and GitLab, the importance
of facilitating traceability, automated license checks, and educational resources
cannot be overstated. Businesses, too, must invest in workflows that track and

maintain reused components to avoid costly noncompliance. Likewise, the open
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source community can champion ethical, secure, and transparent practices for
shared code, thereby preserving OSS’s collaborative spirit while safeguarding

its integrity.

6. Future Directions. Beyond the scope of current methods, this dissertation
points to fine-grained detection at the snippet level, holistic dependency-based
analysis, and advanced heuristics or Al-driven approaches for tracing the true
“upstream” of reused code. These enhancements can help tackle the complexity
of partial file reuse and further refine our understanding of how code moves
through global software networks. The emergence of LLM supply chains
underscores the growing need for robust curation, where automated tools can

ensure high-quality and legally compliant data for training code models.

Collectively, these findings emphasize that copy-based reuse is both a powerful
enabler of innovation and a significant source of unseen risk. Addressing these
challenges will require coordinated efforts among developers, businesses, researchers,
educators, platform maintainers, and the broader OSS community. By developing
better detection tools, clearer license guidelines, and enhanced educational programs,
the ecosystem can harness the benefits of reuse while minimizing its drawbacks.

Ultimately, the work presented in this dissertation serves as an evidence-based
foundation for rethinking open source practices. As software continues to be built
upon layer after layer of shared code, the imperative grows for proactive and
collaborative management. It is our hope that these insights—supported by rigorous
empirical data and grounded in real-world developer perspectives—will spur ongoing
dialogue, research, and practical initiatives that fortify the OSS supply chain. In doing
so, we can realize the full promise of open source software as a secure, sustainable,

and freely shared global resource.
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Appendix A

License Types

List of SPDX license identifiers aggregated by their respective license types:

Permissive: 0BSD, AFL-3.0, Apache-2.0, BSD-2, BSD-2-Clause, BSD-3-Clause,
BSL-1.0, ISC, Libpng, MIT, MIT-0, MITNFA, MIT-Wu, MS-PL, OpenSSL, PHP-
3.01, Pixar, PSF-2.0, Ruby, SGI-B-2.0, TCL, WTFPL, Zlib

Copyleft: deprecated AGPL-3.0, deprecated GPL-3.04, GPL-2.0, GPL-3.0+,
GPL-CC-1.0, OSL-3.0

Weak Copyleft: Artistic-1.0-Perl, Artistic-2.0, CDDL-1.0, deprecated LGPL-
2.1, eprecated_LGPL-3.0, EPL-1.0, EPL-2.0, LGPL-2.04, LGPL-3.0, MPL-1.1, MPL-
2.0-no-copyleft-exception

Conditional Open: CC-BY-3.0, CC-BY-4.0, CC-BY-SA-3.0, CC-BY-SA-4.0,
ODC-By-1.0, OFL-1.0, OFL-1.1

Public Domain: CC0-1.0, libtiff, Unlicense
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