- - PDF Download
e DIGITAL Associati )
'.) ACM . ssodaonter acmopen S 3379597.3387499.pdf
L1eRARy (@ EREam pen : 26 December 2025
(Z]l:)edc;;gr Total Citations: 23

Total Downloads: 194

¢ Latest updates: https://dl.acm.org/doi/10.1145/3379597.3387499
Published: 29 June 2020

SHORT-PAPER
A Complete Set of Related Git Repositories Identified via Community

Citation in BibTeX format

MSR '20: 17th International Conference

Detection Approaches Based on Shared Commits on Mining Software Repositories
June 29 - 30, 2020

AUDRIS MOCKUS, The University of Tennessee, Knoxville, Knoxville, TN, United States Seoul, Republic of Korea

DIOMIDIS SPINELLIS, Athens University of Economics and Business, Athens, Attica, Greece gl‘énsf(‘;;“;“ce Sponsors:

ZOE KOTTI, Athens University of Economics and Business, Athens, Attica, Greece

GABRIEL JOHN DUSING, The University of Tennessee, Knoxville, Knoxville, TN, United
States

Open Access Support provided by:
The University of Tennessee, Knoxville

Athens University of Economics and Business

MSR '20: Proceedings of the 17th International Conference on Mining Software Repositories (June 2020)
https://doi.org/10.1145/3379597.3387499
ISBN: 9781450375177


https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3379597.3387499
https://dl.acm.org/doi/10.1145/3379597.3387499
https://dl.acm.org/doi/10.1145/contrib-81100250207
https://dl.acm.org/doi/10.1145/institution-60015574
https://dl.acm.org/doi/10.1145/contrib-81100444138
https://dl.acm.org/doi/10.1145/institution-60019507
https://dl.acm.org/doi/10.1145/contrib-99659441720
https://dl.acm.org/doi/10.1145/institution-60019507
https://dl.acm.org/doi/10.1145/contrib-99659579920
https://dl.acm.org/doi/10.1145/institution-60015574
https://dl.acm.org/doi/10.1145/institution-60015574
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60015574
https://dl.acm.org/doi/10.1145/institution-60019507
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3379597.3387499&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/icse
https://dl.acm.org/conference/icse
https://dl.acm.org/sig/sigsoft
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3379597.3387499&domain=pdf&date_stamp=2020-09-18

2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR)

A Complete Set of Related Git Repositories Identified via
Community Detection Approaches Based on Shared Commits

Audris Mockus
The University of Tennessee
Knoxville, Tennessee
audris@mockus.org

Zoe Kotti

Athens University of Economics and Business
Athens, Greece
zoekotti@hotmail.com

ABSTRACT

In order to understand the state and evolution of the entirety of
open source software we need to get a handle on the set of distinct
software projects. Most of open source projects presently utilize Git,
which is a distributed version control system allowing easy creation
of clones and resulting in numerous repositories that are almost
entirely based on some parent repository from which they were
cloned. Git commits are unlikely to get produce and represent a way
to group cloned repositories. We use World of Code infrastructure
containing approximately 2B commits and 100M repositories to
create and share such a map. We discover that the largest group
contains almost 14M repositories most of which are unrelated to
each other. As it turns out, the developers can push git object to an
arbitrary repository or pull objects from unrelated repositories, thus
linking unrelated repositories. To address this, we apply Louvain
community detection algorithm to this very large graph consisting
of links between commits and projects. The approach successfully
reduces the size of the megacluster with the largest group of highly
interconnected projects containing under 400K repositories. We
expect that the resulting map of related projects as well as tools and
methods to handle the very large graph will serve as a reference
set for mining software projects and other applications. Further
work is needed to determine different types of relationships among
projects induced by shared commits and other relationships, for
example, by shared source code or similar filenames.
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1 INTRODUCTION

While study of individual software projects has been ongoing for
some time, relatively less effort has been spent on studying groups
of projects even though numerous benefits of understanding groups
of projects exist. Extensive motivation for investigating groups of
projects was stated in, for example [12, 13]. Furthermore, several
attempts at creating an infrastructure for such studies have been
reported [8-11]. Here we focus on an aspect of apparently simple,
but very hard to address challenge of identifying related repositories.
By related repositories we mean repositories that are “developed for
the same project/component.” Unrelated repositories are, thus, are
not intending to merge their code to a single project. For example,
while most GitHub forks are not meant to be independent projects,
but some are. Once we go beyond GitHub, often no information
about relatedness is available. For, example, searching for relevant
code or looking for a project to join, the massive number of the
repositories would waste time and cause confusion.

Simply stated, if we obtain data from two distinct git repositories,
should we treat it as belonging to a single project or as belonging to
two unrelated projects. This is an important question since many
projects have tens of thousands of forks that often contain no or
very little original content as the fork was created just to submit
a pull request and may not have even been used for that purpose.
Some relief can be found for projects on GitHub, where forked
projects can be identified via GitHub API No such information
is available for other projects and projects that were not forked
via GitHub API will be missed. Having a reference list of related
projects can provide a massive help to Mining Software Repos-
itories community by providing a common basis that everyone
can use to count, identify, sample from, or analyze projects. Our
operational definition of a set of repositories representing an in-
dependent project is that all these repositories share the objective
to work on the same project. For example, a fork created to sub-
mit a pull request or to fix a bug that, for all practical purposes,
is expected to be eventually fixed upstream can be illustrated by
the repositories Debian distribution uses to keep track of upstream
packages. They are used to ensure that everything compiles and
can be installed together for the distribution, but are not intended
to maintain the upstream project. This also includes cases where



a project may maintain another project within its own repository,
but not with the purpose of developing it, just to avoid potential
incompatibilities that may occur due to differences in development
schedule. Hard forks, on the other hand, would indicate a desire
to develop the project independently and should be considered as
separate projects.

While there are many ways to identify related projects, here we
focus on a single approach: linking projects sharing at least one
commit. Git commits are based on Merkle Tree and no two commits
are likely to be produced independently. For example, the initial
commit to a repo creating an empty README.md file and done at
exactly the same time (up to a second) in the same timezone, by two
developers having identical credentials would result in an identical
commit. However, as a distributed VCS, git makes it easy to create
clones (via git clone or through GitHub fork button) and resulting in
numerous repositories that are intended to be distributed copies of
the code used in the same project. This feature of Git that enables
distributed collaboration also results in numerous clones of the
original repository. Furthermore, GitHub introduced single-click
way to fork (in essence to clone) a repository on GitHub and use it to
create patches (pull requests) for the origin of that fork. This further
increased the number repositories related to popular projects.

As noted above, it is virtually impossible to produce indepen-
dently identical commits in normal development (see a potential
example above), so it would appear that projects sharing a commit
are related. Here we do not consider other types of related projects
where the version history was not shared and only the source code
has been copied. Such projects can not be identified via shared com-
mits and are a subject of further work, for example by comparing
the blobs shared among the projects or the directory structure of
the source code [6, 7, 19].

To apply the approach we utilize the infrastructure provided by
the World of Code [14]. Specifically, we use version Q of the data
and obtain commit to project relationships. As described in WoC
tutorial [15], the data is stored in 32 databases containing a full
list of pairs between commits and projects in which these commits
were found (c2pFullQXX.s). This commit to project graph has a total
of 99,154,451,345 links between 116265607 projects and 1868632121
commits. We handle the scale of the problem as described in Sec-
tion 3, i.e., by solving a sequence of smaller problems and using the
results to solve the larger problem. The largest group of repositories
(we use words “project” and “repository” interchangeably here) has
almost 14M projects and not all of them appear to be closely related.

We, therefore identify some of the reasons for such outcome
(projects that fetch from or push to repositories of unrelated projects)
and propose and implement alternative operationalizations of re-
lated projects. These involve the attempt to identify and remove
problematic projects or commits, simplification of the problem by
reducing the number of projects by using explicit fork identification
in GitHub, and using Louvain community detection algorithm to
separate connected but unrelated projects.

Our results provide an operationalizaton of related projects for
open source projects utilizing git version control system obtained
from WoC infrastructure. In addition to projects related by a shared
commit, we also provide the ultimate parent from forking rela-
tionships for GitHub forks and the groups defined by Louvain
community detection algorithm.
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The remainder of the paper describes data sources in Section 2,
the approach to link the projects in Section 3, the approach to
eliminate problematic projects and commits in Section 4, the com-
munity detection approach described in Section 5, and summary in
Section 9.

2 DATA SOURCE: WORLD OF CODE

The World of Code [14] infrastructure prototype was created to
support developing theoretical, computational, and statistical frame-
works that discover, collect, and process FLOSS operational data
and construct FLOSS supply chains (SC), identify and quantify its
risks, and discover and construct effective risk mitigation practices
and tools. That prototype stores the huge and rapidly growing
amount of data in the entire FLOSS ecosystem and provide basic
capabilities to efficiently extract and analyze that data at that scale.
WoC’s primary focus is on types of analyses that require global
reach across FLOSS projects.

In a nutshell, WoC is a software analysis pipeline starting from
discovery and retrieval of data, storage and updates, and trans-
formations and data augmentation necessary for analytic tasks
downstream. In addition to storing objects from all git repositories
WoC also provides relationships among them. For the purpose of
this analysis we only use a single relationship from WoC: commit to
project map that lists all commit project pairs. WoC has two inter-
faces: one optimized for random access and another for processing
the entirety of the collection. We chose the second due to need
to obtain the entirety of the commit to project links. WoC splits
each relationship into 32 databases. Specifically, the c2p (commit to
Project) database is split based on 5 bits of the first byte of commits
Shal. Thus we naturally have 32 smaller datasets to analyze. Ran-
domness of Shal ensures that each of these databases represents
the entire collection.

WoC data is versioned with the latest version labeled as Q and
containing 7204111388 blobs, 1868632121 commits, 7596825726
trees, 16172556 tags, 116265607 projects (distinct repositories), and
38142898 distinct author IDs. WoC has collected that data during
November and December of 2019. For more information please
consult WoC website [3]. The proposed grouping into the related
projects produced 66532614 such clusters with the largest cluster
containing 354920 repositories (miranagha/js).

We also use fork parent data obtained from GHTorrent [11] and,
for GitHub projects not present in GHTorrent, we retrieved using
GitHub GraphQL API [2]. Please note that that GitHub forks may
have their own forks. For each project we obtain the ultimate parent:
that is if the parent has a parent, we continue until the repository
is no longer fork.

3 LINKING PROJECTS BY SHARED COMMITS

As noted above, we distribute the computational load over the 32
databases listing commit/project pairs. Since data in these lists
are sorted we simply need to group projects that share the same
commit. Commits belonging to a single project can be ignored as
they will not provide a link among projects. The result of the first
pass over each of the 32 databases is a list of lines each listing two
or more projects linked by a commit (for more detail please see ssc-
oscar/forks/README.md). We then encode each line representing
a group of N projects as N — 1 links linking the first project to



the remaining ones. The resulting graph is used to produce cliques
(connected components) via C++ Boost library [1]1. The resulting
components from each of the 32 databases are then combined into
a single graph and the same library is used to produce the overall
components. The largest components are shown in Table 1. Names

Member Count Name
13,912,612 grr

28,193 rh24/parrot-ruby
17,267 kvignali/arel-lab
16,181 hmagph/ui-
16,170 54/996ICU
10,541 mil/kb
10,218 bloomni/aa
9911 f0/rkt

Table 1: The largest groups of related repositories
of the clusters are chosen by selecting a repository from the cluster

that has the shortest name that and is first in the alphanumeric
order. This cluster name is provided as the second column of the
provided map, where the first column lists all 116,265,607 projects
and the linking produces 61,921,909 distinct clusters unconnected
by commits. The first mega-cluster exceeds the next one by almost
three magnitudes and is clearly undesirable as it packs more than
10% of all projects and groups together what appear to be rather
unrelated projects.

4 REMOVING BAD PROJECTS AND COMMITS

Given less than ideal outcome obtained in Section 3, we have spent
some time investigating the reasons behind that outcome. Specifi-
cally we identified at least two kind of repositories that give rise to
such a mega-cluster. First, it appears that some projects are used
in what appears to be simply a backup storage. Since any devel-
oper who has a permission to write to a repository can push git
objects to it from any unrelated repository, this feature may have
been used by some developers to use cloud git version control
systems simply to back up their work. Examples of such repos-
itories include “docker-library/commit-warehouse” and “devilln-
side/AcerRecovery.” The second class of problematic repositories
appears to include repositories that contain version history from
multiple independent projects that are used to build a single project,
for example, “bloomberg/chromium.bb” that contains commit his-
tory from independent projects such as libdrm and FFmpeg. A
simple attempt to remove such projects manually did not give
great results as after one of such problematic projects was removed,
there we hundreds of others that remained leaving the size of the
mega-cluster stubbornly high. After eliminating a large set of po-
tentially problematic projects (listed in the code as an associative
array bad Projects) and also removing potentially problematic com-
mits (commits that span more than one thousand projects), we still
had a formidable mega-cluster containing 9,626,594 projects and
65,591,526 groups of unrelated projects.

5 COMMUNITY DETECTION

Research on large graphs has produced a number of algorithms
that detect communities: groups that interact (have more links)

!Specifically connected_components function from

“boost/graph/connected_components.hpp”
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among themselves than across groups. Such algorithms tend to be
much more time consuming than the arguably simplest connected
subset detection algorithm we used in Section 3. More importantly,
it is not clear how to combine the results from multiple runs of the
algorithm on different subsets of commits as we did in that section.
We, therefore, tried to simplify the problem in two ways. First,
we reduce the number of distinct projects by using information
obtained from GitHub fork API and substituting project name by
its ultimate parent. Second, we reduce the number of commits by
considering all commits touching the same subset of projects as a
single commit. That resulted in 141,53,282 groups (hyperlinks) of
projects representing a minimum of 13,82,233,820 links involving
two projects.

After this preparation the resulting graph was then analyzed
using iGraph package in R [16]. It was necessary to read and add
links to the graph in chunks in order to avoid creating a long vec-
tor (iGraph can not presently handle R’s long vector). Louvain’s
algorithm implementation in R was used, specifically, the function
“cluster_louvain” [5]. Louvain’s algorithm optimizes modularity. It
was chosen for its speed— spectral clustering requires O(n®) op-
erations while Louvain is nearly linear on the sparse graph we
have.

The resulting set of groups (we use groups, components, and
clusters interchangeably) appears to be much more reasonable
with the three largest groups representing what appear to be le-
gitimately related groups of projects involved in language tutori-
als (miranagha/js), github.io templates of creating a static github
website/personal CV (6101/-) programming assignments (ykgm/R),
datasharing templates (jkwonl/test), linux kernel for mobile mods
(aosp/oz), bootstrap (UCF/50), configuration files (rdp/a), and spring
framework (maiyy/-).

Member Count Name
354920 miranagha/js
333645 6101/-
241893 ykgm/R
211538 jkwonl/test
179315 aosp/oz
101988 UCEF/50
94160 rdp/a
89602 maiyy/-

Table 2: The largest groups of related repositories using Lou-
vain community detection

6 DATA OVERVIEW
We provide “ultimateMap2.s” where the first column is the repo
name transformed with the first °/’ replaced by °_, and the ‘github.com/’
removed for GitHub repositories. It was produced by assigning the
result from running community detection mentioned previously to
assign a cluster name which represents an independently developed
project to all repositories in World of Code.

We also provide ‘ghForks.gz’ which is produced by identifying,
for each forked repository, its ultimate parent. If a parent is a fork
itself, find its parent, and so on, until it is not a fork.

7 EVALUATION

To measure the accuracy of the community detection algorithm
we rely on the incomplete list of ultimate parent repositories at



the time we performed the clustering calculation. Over the weeks
during which we were doing the clustering, we also retrieve in-
formation using GitHub API on whether or not the project was
a fork and, if so, what was the parent. Over 15M projects from
WoC could not be found in the ghTorrent extract we used. Due to
throtling of GitHub API the process of obtaining fork parents is
very slow. Over the period we did the computation, we were able to
retrieve fork parent information for only approximately one million
GitHub repositories. By the time of writing we have collected fork
information on 1,652,872 repositories that was not available for
the community detection analysis described in this section. We
used that information to determine if the community detection
approach was able to group these repositories to the corresponding
ultimate parents in this new extract. Of these, only 32,082 or 1.9%
were not placed in the more than one group (represented by the
ultimate parent). Of these incorrectly split, most (9,245) were in the
octocat/Spoon-Knife, which is a test repository for developers to
practice using git. Also, only a tiny percentage of repositories were
separated from the main group, for example only one repository
was split from spring-projects/spring-boot (see Table 3. As shown

In split | lrgst grp Parent fork
9245 9222 octocat/Spoon-Knife
2717 2684 rdpeng/ProgrammingAssignment2
1957 1936 rdpeng/ExData_Plotting1
1046 1045 spring-projects/spring-boot

Table 3: Split fork parents with most repositories

in the table the most repositories in forks that were split, occurred
in training repositories and with only a few repositories not in the
primary group.

We also compare our approach to the competing approach de-
scribed [18]. Specifically, the competing approach provides groups
for 10,649,348 repositories and the set of repositories that we could
match was 8157317. Assuming the competing approach as the gold
standard, our approach splits 100,300 of the 2,036,117 groups (5%)
in the competing approach. Conversely, assuming our approach
as the gold standard, the competing approach splits 44,357 out of
2,124,711 (2%) of the groups we detect using our algorithm.

Inspecting the largest discrepancies, our approach produces 629
groups for the torvalds/linux group of the competing approach
and competing approach splits aosp/oz group (kernel mobile mods)
produced by our algorithm into 1,245 groups. All data and code
needed to reproduce the results are in github.com/ssc-oscar/forks.

8 LIMITATIONS

It is important to note that we are not trying to solve the prob-
lem of identifying all related project, just ones that are related via
code commits. We are also not investigating finer types of relation-
ships, for example, light forks done for a single pull request vs hard
forks where projects evolve independently or all shades of grey
in between. Other approaches may be more suitable (or used in
combination with shared commit methods) for that. For example,
shared code, amount of independent evolution, etc.

We utilize WoC data collection with all associated limitations of
using that repository and described there [14].

The accuracy of our approach is not easy to establish. While
we rely on explicitly specified GitHub forks in the community
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detection step, these may involve cases where the forked projects
are developed independently with no intention to merge. We were
able to reproduce the explicitly specified forks with high accuracy,
however.

Some of the projects in WoC may have been renamed and the
new project may have the name of the old project but an entirely
different content. Identifying and eliminating such projects would
help improve the accuracy of the community detection algorithms.

While our approach appears to provide sensible groups of projects,
it may be further improved by experimenting with different com-
munity detection algorithms and by weighting links in a different
manner.

While there is no particular reason to expect that modularity-
focused algorithms should work on a problem involving the dis-
crimination of forks and non-forks, it is not unreasonable to assume
that unusual patterns of using git such that objects from unrelated
projects are shared within a single repository, would appear as
anomalies and thus be eliminated as spurious links between groups
of legitimate forks.

9 SUMMARY

The main purpose of this work is to demonstrate the feasibility of
solving the problem of finding groups of repositories represent-
ing independent projects on a global scale with a high scale of
automation, and to share the resulting dataset with the research
community for further improvement. We also hope that the result-
ing map will be incorporated into WoC and other infrastructures
such as BoA [10] and SoftwareHeritage [9] to further simplify sam-
pling, counting, and statistical analysis of the open source projects.

Specifically, we discover that a direct application of commit-
sharing resulted in the largest group containing almost 14M reposi-
tories. This happened because the developers can push git objects
to an arbitrary repository and pull objects from unrelated reposito-
ries into their repository, thus linking unrelated repositories. We
attempted to eliminate such problematic repositories with limited
success until we applied Louvain community detection algorithm.
The approach successfully reduces the size of the mega-cluster with
the two largest groups of highly interconnected projects containing
approximately 100K repositories that all appear to be closely re-
lated. As future work, it might be worth considering ways to apply
time-series methods to observe graph behavior over time. In [17],
a prediction framework is presented for certain graph parameters,
e.g. modularity or average degree. Reducing the size of the graph
in question may also be helpful which [4] suggests how this might
be done. Underpinning this approach is that not all edges of the
graph are necessary to draw conclusions, and by embedding the
graph in a metric space, certain edges close together in some sense
can be treated as a single edge.

We expect the tools that the resulting map of related projects as
well as tools and methods to handle the very large graph will serve
as a reference set for mining software projects and other applica-
tions. Further work, however, will be required to determine the
different types of relationships among projects induced by shared
commits and other relationships, for example, by shared source
code or similar filenames.

The work has been partially supported by the following NSF
awards: CNS-1925615, IIS-1633437, and 1IS-1901102
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