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Abstract—A critical part of creating code suggestion systems
is the pre-training of Large Language Models (LLMs) on vast
amounts of source code and natural language text, often of
questionable origin, quality, or compliance. This may contribute
to the presence of bugs and vulnerabilities in code generated by
LLMs. While efforts to identify bugs at or after code generation
exist, it is preferable to pre-train or fine-tune LLMs on curated,
high-quality, and compliant datasets. The need for vast amounts
of training data necessitates that such curation be automated,
minimizing human intervention.

We propose an automated source code autocuration technique
that leverages the complete version history of open-source soft-
ware (OSS) projects to improve the quality of training data.
The proposed approach leverages the version history of all OSS
projects to: (1) identify training data samples that have ever
been modified, (2) detect samples that have undergone changes
in at least one OSS project, and (3) pinpoint a subset of samples
that include fixes for bugs or vulnerabilities. We evaluate this
method using “The Stack” v2 dataset, comprising almost 600M
code samples, and find that 17% of the code versions in the
dataset have newer versions, with 17% of those representing
bug fixes, including 2.36% addressing known CVEs. The clean,
deduplicated version of Stack v2 still includes blobs vulnerable
to 6,947 known CVEs. Furthermore, 58% of the blobs in the
dataset were never modified after creation, suggesting they
likely represent software with minimal or no use. Misidentified
blob origins present an additional challenge, as they lead to
the inclusion of non-permissively licensed code, raising serious
compliance concerns.

By deploying these fixes and addressing compliance issues,
the training of new models can avoid perpetuating buggy code
patterns or license violations. We expect our results to inspire
process improvements for automated data curation, a critical
component of AI engineering, with the potential to significantly
enhance the quality and reliability of outputs generated by AI
tools.

Index Terms—Large Language Models (LLMs), The Stack
v2 Dataset, Open Source Software (OSS), LLMs for Code
(LLM4Code), Software Supply Chains, World of Code (WoC),
Security Vulnerability, Open Source Licensing

I. INTRODUCTION

Large Language Models (LLMs) are already employed by
popular tools such as GitHub Copilot and have a significant
impact on how people interact with computing resources. LLM
code-generation tools appear to increase productivity [1], are
easy to access with little or no cost on popular coding plat-
forms, and generated code is rapidly spreading (“GitHub Copi-

Replication package available at: https://zenodo.org/records/14175945

lot is behind an average of 46% of a developer’s code” [2]).
Quality control of this code, however, is severely lacking in the
LLM-based Software Supply Chain (SSC). LLMs are trained
on vast amounts of source code and natural language text that
are of questionable origin and quality. The output generated
by LLMs, therefore, often contains bugs, vulnerabilities, or
license violations that are copied or reused to train other
LLM models, thus propagating the problem. Hubinger et al.
[3] showed that LLMs can introduce vulnerabilities and this
behavior is extremely difficult to change via fine-tuning. It is
reasonable to assume that at least part of that buggy output
may be attributed to the buggy files used to train LLMs.
While existing approaches use AI to detect the most common
insecure coding patterns [2], but many vulnerabilities do not
fit such simple patterns. It is widely accepted that the size and
quality of training corpus are essential for good performance
of the models, yet common curation techniques, such as
number of stars or forks, appear ineffective [4]. Independent
of the intended coding tasks, a large body of training data is
necessary for LLMs to be effective. As poor quality training
data can reduce the quality of LLM-based tools, improving
the state of art in source code training data curation is an
important task that would impact all downstream efforts. It is
worth noting that source code is often included in training data
for natural language models as well. For example, the natural
language collection in [5] has hundreds of gigabytes of source
code and collection described in [6] nearly 100GB.

Previous work found instances of vulnerable or license-
violating code in open source training datasets. This shows
that by taking information from version control systems, it
is feasible to identify vulnerable, buggy, or license-violating
code and replace it with fixed versions [7, 8].

In summary, it is essential to exclude problematic code from
LLM training datasets, or, at least, to flag it as high risk.

The goals of this work is to investigate the quality of the
source codes that are used to train LLMs and to develop
automated approaches to improve it. Specifically, we propose
a simple and effective way to identify (and fix) several types
of problematic source code that is used to train LLMs.

In a nutshell, we leverage the fact that a file’s content may
undergo numerous changes over its lifetime, with some of
these changes being bug fixes. By identifying cases where
a file in the training data has been modified and updated, we
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can recommend these newer versions as replacements for older
versions in the training dataset. In order for this approach
to work, we have to go across repository boundaries and
consider versions (and their history) in all public repositories,
i.e., Universal Version History (UVH) [8]. World of Code
(WoC) research infrastructure [9, 10] provides capabilities to
accomplish such an arduous task as described in Section III.

Our primary contributions are: 1) an approach to identify
potentially vulnerable, buggy, or not heavily used source code
in public LLM training datasets; 2) an approach to identify
potential license violations in these datasets; and 3) evaluation
of the approach on the largest public curated code LLM
training dataset the Stack v2 [11]. We also articulate how code
LLM’s represent a novel type of software supply chains and
suggest that never-modified code may indicate its low use and
untested quality and that should be taken into account when
constructing training datasets.

In the remainder of the paper Section II discusses curated
training datasets used for evaluation, relevant key concepts of
software supply chains, how LLM-generated coder represents
a novel type of software supply chain, and key features of
WoC used in this study. Section III describes our approach in
detail. Section IV presents and discusses our findings.

II. BACKGROUND

A. Types of Software Source Code Supply Chains

Software supply chain concept is helpful for assessing
risks, as in traditional supply chains. However, software supply
chains have substantially different nature from traditional
supply chains. In particular, three types of software source
code1 supply chains have been previously identified [12].
The most common, or Type I SSC is represented by code
(runtime) dependencies. For example, an import statement in
Java or include statement in C programming languages. The
two primary risks for downstream projects in this scenario are:
insufficient upstream maintenance, where bugs and vulnerabil-
ities remain unresolved, and overly aggressive maintenance,
where upstream changes disrupt downstream code [13].

Type II SSC involves copied code, a common practice
in open-source software where code is shared publicly [14],
allowing anyone to copy or fork it (within licensing re-
quirements). While breaking changes are no longer a risk in
Type II SSC, the absence of upstream maintenance becomes
inevitable, as the code is now maintained within the destination
project.

Type III SSC involves knowledge transfer where developers
learn procedures techniques and tools by working in one
project and then apply some of what they learned elsewhere.
While learning, in general, is a good thing, some quality
practices or API usage may introduce bugs or vulnerabilities
that, if adopted by developers, are then spread by these
developers to other projects.

1We explicitly exclude various ways binary software is delivered as, for
example in Solar Winds hack.

The current state of the industry in source code SSCs is
to capture dependencies based on package managers (Type I
SSCs) and to rely on the “official” directories such as NVD
and package managers to identify the security and licensing
attributes. As was shown in [7, 8], rampant code copying
enabled and encouraged by OSS results in massive orphan
vulnerabilities and licensing violations that cannot be detected
by existing approaches.

B. The Promise and Challenges of Large Code Datasets

Large-scale code datasets are invaluable for advancing AI-
driven code solutions, such as automated code generation, bug
detection, and refactoring. These datasets provide extensive
repositories of programming languages, styles, and structures,
enabling large language models (LLMs) to learn complex
coding patterns and generalize across diverse coding tasks.
By leveraging such data, AI models significantly improve in
generating, completing, and correcting code, which supports
developers in accelerating the software development cycle and
reducing costs [11, 15].

However, maintaining the quality and integrity of these
large datasets poses several challenges, often underexplored
in research. Duplication, for instance, can lead to redundancy,
creating biases and reducing model diversity. Version control
is another critical challenge, as datasets sourced from dynamic
platforms like GitHub may frequently change; without careful
version tracking, models risk learning outdated or deprecated
practices. Provenance tracking is essential for maintaining the
contextual relevance and reliability of data, allowing users to
trace the origins and evolution of code snippets. Additionally,
licensing complexities arise, as open-source code often comes
with a range of permissive and restrictive licenses. Properly
handling these licensing issues is crucial to ensuring lawful
usage, especially in commercial settings [16].

LLMs introduce a novel type (Type IV) of Software Supply
Chains that manifest by relationships between the LLM-
generated code and the code used to train the LLM models.
LLMSSCs, similar to Type II SSCs, are conceptually copying
the code (including its bugs) in the training data but in a way
that obfuscates the origin. The full scope of risks posed by
Type II copy-based SSCs has yet to be studied in depth.

C. The Stack v2 Dataset

To evaluate our approach we use a large open source
dataset intentionally curated for training code LLMs: the Stack
v2 [11]. “The Stack v2 contains over 3B files in 600+ program-
ming and markup languages. The dataset was created as part of
the BigCode Project , an open scientific collaboration working
on the responsible development of Large Language Models for
Code (Code LLMs). The Stack serves as a pre-training dataset
for Code LLMs, i.e., code-generating AI systems which enable
the synthesis of programs from natural language descriptions
as well as other from code snippets.”

This dataset is widely adopted in AI and software de-
velopment due to its extensive multi-language coverage and
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permissive licensing, enabling use in both academic and com-
mercial contexts. The Stack (v2) fosters open collaboration,
supporting model training across diverse coding ecosystems
and advancing tools for software automation and analysis [16].

In addition to the full dataset, the Stack v2 has several dedu-
plicated versions. the-stack-v2-dedup is near-deduplicated,
the-stack-v2-train-full-ids is based on the the-stack-v2-dedup
dataset but further filtered with heuristics and spanning 600+
programming languages. Finally, the-stack-v2-train-smol-ids is
based on the the-stack-v2-dedup dataset but further filtered
with heuristics and spanning 17 programming languages. We
evaluate our fixing approach on the full and smol (maximally
deduplicated) datasets2.

D. Motivation for This Study

Evaluating large code datasets is essential to address the
intricacies of version security and licensing, which collectively
impact the reliability and ethical compliance of large language
models (LLMs) for code.

1) Security Vulnerabilities and Bugs: The security implica-
tions of large datasets are significant, especially in the context
of outdated or vulnerable code. If models are trained on
datasets containing undetected security flaws, these vulnera-
bilities may persist in model outputs, increasing the risk of
insecure code suggestions. This issue is particularly concern-
ing for code used in sensitive applications, where even minor
security oversights can lead to substantial risks and exploita-
tion potential. Security-focused dataset evaluation is therefore
vital to prevent models from inadvertently embedding insecure
practices into their code outputs [17].

Given the large-scale, open-source nature of The Stack v2
dataset, it is likely to contain instances of vulnerable and buggy
code. This hypothesis (H1) is based on the prevalence of
“orphan vulnerabilities” in open-source projects, as described
by Reid et al. [7], where vulnerabilities in copied code
persist even after they are patched in the original source. In
large datasets aggregated from numerous repositories, code
reuse without consistent patching introduces security risks, as
outdated or unpatched code versions may proliferate across
projects, spreading known vulnerabilities further.

• Hypothesis 1 (H1): The Stack v2 dataset is likely to
contain instances of vulnerable and buggy code.

2) Legal Considerations: Maintaining licensing integrity is
fundamental for the lawful and ethical deployment of code-
based AI. The provenance and licensing of code samples in
these datasets must be meticulously tracked to prevent legal
risks associated with licensing misrepresentation or inaccurate
attributions. Open-source projects often involve significant
code reuse, which can lead to fragmented metadata or altered
licensing information as code is copied across projects. Proper
licensing ensures that the models’ outputs respect open-source
constraints, which is crucial for both research and commercial
applications. Without rigorous checks, models might generate

2For more details on the dataset and the deduplication process, refer to the
Stack v2 documentation: https://huggingface.co/datasets/bigcode/the-stack-v2

code based on improperly licensed data, exposing end-users
to compliance issues and potential litigation. Ensuring that
datasets uphold licensing integrity not only fosters ethical
AI but also protects users from unforeseen legal complica-
tions [16].

Due to the prevalence of “copy-based reuse” in open-
source development, as explored by Jahanshahi et al. [14], we
hypothesize (H2) that The Stack v2 dataset contains instances
of misidentified code origins. While the dataset has metadata
identifying the project from where each source code file
was obtained, that file may have been copied from another
project that has a different or even incompatible license.
This form of reuse, where source code is directly copied
into new projects, often results in fragments with altered or
lost metadata, which complicates the ability to accurately
trace their provenance. This lack of provenance tracking can
lead to legal and ethical issues in AI applications for code.
Without accurate metadata, models may inadvertently generate
code with improper licensing, exposing users to potential
compliance issues. Misidentification of code origins in datasets
like The Stack v2 is particularly risky for industry applications,
as it challenges the trustworthiness and lawful deployment of
LLM4Code models in commercial environments.

• Hypothesis 2 (H2): The Stack v2 dataset is likely to
contain instances of misidentified code origins that are
prone to license violation.

E. Contributions

The primary contributions of this paper focus on addressing
data quality and compliance concerns within The Stack v2
dataset. The paper aims to enhance the understanding and
reliability of large code datasets by providing the following
key contributions.

1) Assessment of Security and Reliability: We introduce a
novel methodology for identifying source code that may be
potentially vulnerable, contain bugs, or exhibit minimal usage
in real-world applications. Our approach uniquely incorporates
version control history to track and analyze the evolution of
source code, focusing on identifying newer versions of files
that indicate updates, bug fixes, or refinements over time. By
examining commit histories and versioning patterns, we can
detect files that have undergone improvements or corrections,
flagging older versions as potentially vulnerable or buggy. This
historical perspective provides insight into code stability and
usage trends, allowing us to differentiate actively maintained,
reliable code from outdated, less robust sections.

2) Analysis of Code Provenance and Licensing Accuracy:
We conduct a detailed examination of code provenance to
evaluate licensing accuracy and the origins of code snippets
within the dataset. By tracking the source and licensing status
of code entries, we provide a comprehensive assessment of
compliance with open-source licensing requirements. This
contribution is particularly important for models deployed in
industry, where legal and ethical use of data must be assured.

3) Evaluation on Large-Scale Code Dataset: To validate
the effectiveness of our approach, we perform a comprehensive
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evaluation on the largest publicly curated code LLM training
dataset, Stack v2. This dataset serves as an ideal benchmark
due to its scale and diversity. By applying our methodology
to Stack v2, we can assess the robustness of our techniques in
identifying potentially vulnerable or outdated code segments,
accurately tracking version histories, and verifying licensing
compliance across a large and varied dataset. This evaluation
establishes the applicability and scalability of our contributions
to real-world, large-scale code datasets, reinforcing the value
of our work in supporting the development of secure, high-
integrity LLM training corpora.

III. METHODOLOGY

To address big data-related aspects of the proposed work, we
leverage WoC research infrastructure [9, 10] for open source
version control data. This data includes a vast majority of
public open source projects and provides access to petabytes
of data that includes versions of source code, information on
time, authorship, and exact changes made to the source code
over the entire activity history of most participants in OSS.

A. Key Concepts

The proposed method for identifying issues in training data
leverages unique capabilities of WoC. In particular, WoC’s
ability to cross-reference and track the history of code versions
across nearly all public repositories, along with its curated
data that addresses complex challenges like repository defork-
ing [18] and author ID aliasing [19], makes this approach
feasible.

We use a simple example to demonstrate the tracing and
cross-referencing capabilities of WoC. Suppose we take a
single sample b (version or, in git terms, blob) of source code
from any training (or test) data. We can calculate git SHA-1 3

for this sample. All further calculations use git SHA-1 and do
not require the content.

For a blob b to materialize in a version control repository,
it has to be created by a commit c. Git commits include the
time of the commit, commit message, SHA-1 of the parent
commit(s) and SHA-1 of the tree (folder). WoC, by comparing
the trees4 of the commit and its parent(s) determines all the
modifications to the project done by the commit. Specifically,
in case any of the project’s files are modified, it extracts the
tuple (bo, bm) representing the old and the new version of the
file. These pairs are associated with the commit and its other
attributes, like time, author and commit message.

Suppose there is a commit, ct(bo, bm), which addresses a
vulnerability v in project P . This commit, c, modifies a file f
at time t, where the original version of the file is represented
by the blob bo and the modified version by bm. WoC’s cross-
referencing allows us to identify all repositories containing bo
or bm, all relevant commits, their parent and child commits,
and the authors and projects associated with these commits.

3Git SHA-1 is simply a SHA-1 calculated on the string (representing the
content) with prepended string “blob SIZE\0” where SIZE is the length of
the content.

4WoC contains over 20B blobs.

Typically, we need a repository and a commit to identify
what files were changed, their content before and after the
change, as well as the parent commit. By collecting and cross-
referencing nearly all open source data, WoC allows us not
only to go forward in version history (see child commits), but
also to identify all commits that either created or modified a
particular version of the file. To identify problems with the
LLM training data, we will first match it to blobs or commits
in WoC. Both the Stack and the Stack v2 contain versions of
the files (blobs) and their git SHA-1 digests. We, therefore,
just need the list of SHA-1 digests to match them to blobs
in WoC. We further assume that if there exists at least one
commit that modifies bo, and its commit log message contains
keywords (described below) indicating that it is a fix, then
that blob is buggy. Similarly, if the commit indicates that it
fixes a vulnerability, we assume that modified blob contains
vulnerability.

B. Identifying Potential Noncompliance

The Stack dataset provides information on repositories and
their identified licenses for all blobs. Since code reuse through
copying is common among developers [14], accurately tracing
the originating projects for each blob can be challenging. WoC
addresses this by offering a map [20] that, for blobs found
in multiple projects, sorts them by the commit time of each
blob’s creation, allowing us to identify its first occurrence and
the repository where it was initially committed. By comparing
this origin information from WoC with the data in the Stack,
we can verify whether the originating repository of each blob
has been accurately identified.

If the origin identified by WoC does not match the origin
listed in the Stack data, we then analyze the licenses associated
with both the WoC-identified originating repository and those
detected by the Stack. Using WoC’s license map [21], we
compare this information with the Stack’s license data to
identify potential instances of license noncompliance.

C. Sampling

We used a 1
128 th sample for certain quantitative analyses

to balance computational feasibility with representativeness.
The sampling was based on SHA-1 hashes of the blobs and
commits, which ensures that the selection process is effectively
random. This approach maintains statistical robustness while
significantly reducing the computational overhead of process-
ing the entire dataset.

IV. RESULTS AND DISCUSSIONS

A. Hidden Vulnerabilities

As described in Section III, we first extract git SHA-1 for
all blobs in the Stack v2 (full) and the-stack-v2-train-smol-ids
(smol) datasets. The former has 582,933,549 and the latter has
87,175,702 unique blobs. The total number of blobs in WoC
version V3 (extracted at about the same time as the Stack v2)
has over 26B blobs, or almost 45 times more blobs than the
full version and 300 times more than the small deduplicated
version.
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TABLE I
COUNTS IN THE BLOB SAMPLE

full smol
count % (row) count % (row)

1 Total 4,553,119 680,917
2 Missing 115,239 2.53 (1) 16,533 2.42 (1)

3 Have an old version 1,622,641 35.63 (1) 287,412 42.20 (1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 First version 2,813,171 61.78 (1) 376,719 55.32 (1)
5 No new version 2,658,805 94.51 (4) 359,380 95.39 (4)

6 Have a new version 788,059 17.30 (1) 69,346 10.18 (1)
7 Found new versions 1,462,363 - 111,453 -

Starting from these two lists of blobs5 we first obtained two
maps to commits: the first map links blobs to commits creating
the blob (including the previous version of the file), while the
second map links to commits that modified the file, thereby
creating a new blob, as described in the previous section. Not
all blobs could be mapped to commits, as a small fraction did
not appear in either map. This could be due to certain code
versions being created without a publicly accessible version
history or missing corresponding commits or trees in WoC.

Table I summarizes the blob counts for two evaluation
datasets, based on a 1

128 th random sample determined by the
SHA-1 hash of each blob. These counts can be extrapolated
to the full dataset by multiplying by 128.

From Table I, we observe that approximately 2.5% of the
blobs could not be linked to any commits. Among the re-
maining blobs, 62% and 55% represent files that were created
without preceding blobs, i.e., they are the initial versions. Of
these, only 5.5% and 4.6% had a newer version, meaning
the majority were created but never modified. Since the first
version of frequently executed source code is rarely error-free,
this lack of updates suggests the code was likely not used in
practice, raising concerns about its overall quality.

Furthermore 17.3% and 10.2% of the blobs have a subse-
quent version(s). These versions are likely fixing existing bugs,
vulnerabilities, make code compatible with newer versions of
libraries, or add new functionality. Since the next version of
the code is known, it would make sense to replace the versions
of the training data with updated versions.

We further analyze the blobs that have been updated. Using
the methodology described in [22], we identify likely bug fixes
by searching for terms fix, bug, issue, patch, error, resolve,
correct, problem, and their common variations, as well as cve
in the commit messages6.

The results are shown in Table II. It summarizes the counts
for two evaluation datasets, based on a 1

128 th random sample
determined by the SHA-1 hash of each commit that introduces
a new version for a blob in the Stack dataset. These counts

5The second list had only 26% overlap with the first list instead of being
a strict subset of the first.

6grep -iwE ’fix|fixes|fixing|bug|bugs|issue|issues|
patch|patches|error|errors|resolve|resolved|resolving|
correct|corrects|corrected|correcting|problem|
problems|debug|debugs|debugged|debugging|cve’

TABLE II
COUNTS IN THE NEW VERSION COMMIT SAMPLE

full smol
count % (row) count % (row)

1 Commits 835,699 104,782
2 Blobs 5,068,635 279,652
3 New versions 5,657,384 307,362

4 Fix commits 137,091 16.40 (1) 13,628 13.00 (1)
5 Fix blobs 877,811 17.31 (2) 40,168 14.36 (2)
6 Fix new versions 935,587 16.53 (3) 41,222 13.41 (3)

7 CVE commits 845 0.61 (4) 83 0.60 (4)
8 CVE blobs 20,765 2.36 (5) 756 1.88 (5)
9 CVE new versions 20,561 2.19 (6) 809 1.96 (6)
10 Distinct CVEs 851 78

TABLE III
CVE COUNTS IN COMPLETE SMOL DATASET

CVE commits CVE blobs Distinct CVEs

Count 11,907 19,944 6,947

similarly can be extrapolated to the full dataset by multiplying
by 128.

Among the 5,068,635 blobs with newer versions, we find
that 17.31% and 14.36% of the blobs were updated by a fix
commit. If we extrapolate the results, we see that in total,
101M blobs in the current full Stack v2 database (representing
17.30% of all blobs in it) can be updated to newer versions
and 17.31% of these new versions are bug fixes. For the smol
dataset, we have 9M (representing 10.18% of all blobs in it)
that can be updated to newer versions and 14.36% of those
are bug fixes. While deduplication reduced the proportion of
buggy samples, millions of them still remain and can be easily
fixed.

Finally, we checked how many code sample have fixes to
known vulnerabilities. To do that we searched for the regular
expression representing CVE “cve-[0-9]+-[0-9]+” and found
that 2.36% and 1.88% of the fixes in our sample relate to a
known CVE.

Due to the important nature of known vulnerabilities, we
further analyzed the complete smol dataset—that is supposed
to be most reliable version of the Stack v2—to find blobs
that have a newer version with fixes to known CVEs. The
results are shown in Table III. We found that 19,944 blobs
in the smol dataset have newer versions that fixing a known
CVE. These samples were changed by 11,907 commits that
mentioned 6,947 distinct CVEs in their commit message.

In summary, despite careful curation and employment of
sophisticated heuristics, even the clean version of the Stack
v2 dataset contains millions of unfixed versions of the code,
including thousands of unfixed vulnerabilities that supports our
first hypothesis (H1).

B. Potential Noncompliance

The Stack v2 dataset consists of code that is either licensed
under permissive terms or lacks a specified license. To address
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Key Findings 1

1) 17.30% and 10.18% of blobs in the full and smol
datastes, respectively, have newer versions, out of
which 17.31% and 14.36% are bug fixes.

2) 61.78% and 55.32% of blobs are the first version
created, out of which 94.51% and 95.39% have
no newer versions, meaning they were created but
never modified, suggesting low quality.

3) There are 19,944 blobs in the clean and dedupli-
cated version of the Stack v2 (smol) that have a
newer version were a known security vulnerability
is being fixed.

4) In total, 6,947 known CVEs has been found in the
smol dataset.

TABLE IV
REUSED BLOBS AND THEIR ORIGIN

full smol
count % (row) count % (row)

1 Total 582,933,549 87,175,702
2 Reused 90,303,809 15.49 (1) 9,848,987 11.30 (1)

3 Same 29,432,636 32.59 (2) 3,764,702 38.22 (2)
4 Different 60,871,173 67.41 (2) 6,084,285 61.78 (2)

potential licensing concerns, the Stack v2 allows authors to
opt out of inclusion in the dataset. It is important to note that
code without a license is distinct from unlicensed code. From
a copyright perspective, code without a license defaults to “all
rights reserved” [23], which raises significant concerns about
the inclusion of such code in this dataset.

As detailed in Section III-B, we analyzed blobs within the
dataset that were reused across multiple OSS projects, as
identified through WoC [20]. For each blob, we determined
its originating project—the project with the earliest commit
timestamp containing that blob—and cross-referenced it with
the corresponding project in the Stack dataset. The results are
shown in Table IV.

The results indicate that 15.49% and 11.30% of blobs were
reused at least once. Furthermore, in 67.42% and 61.78%
of instances, the originating projects identified by the Stack
dataset differ from those identified by WoC. This highlights
the inherent complexity of tracing the origins of code reused
through copy-and-paste. WoC’s ability to perform such iden-
tification stems from its comprehensive coverage of nearly all
open-source projects and their version histories.

Since cases with misidentified origins present a potential
risk of license noncompliance, we conducted a further inves-
tigation into the blobs with differing identified origins. The
detailed results of this analysis are presented in Table V.

The results reveal that 36.90% and 27.38% of the blobs
with misidentified origins have licenses that differ from those
identified in the Stack dataset. These discrepancies fall into

TABLE V
REUSED BLOBS WITH DIFFERENT ORIGINS AND THEIR LICENSES

full smol
Stack v2 WoC count % (row) count % (row)

1 Different Origin 60,871,173 6,084,285

2 Same License 38,410,728 63.10 (1) 4,418,289 72.62 (1)
3 no license no license 26,604,621 69.26 (2) 3,269,149 73.99 (2)
4 permissive permissive 11,806,107 30.74 (2) 1,149,140 26.01 (2)

5 Different License 22,460,445 36.90 (1) 1,665,996 27.38 (1)
6 permissive no license 10,257,891 45.67 (5) 721,920 43.33 (5)
7 no license permissive 9,309,959 41.45 (5) 658,085 39.50 (5)
8 no license restrictive 1,868,500 8.32 (5) 193,358 11.61 (5)
9 permissive restrictive 1,024,095 4.56 (5) 92,633 5.56 (5)

four distinct categories. In the first case, the Stack identifies
the license as permissive, while WoC identifies no license. In
the second, the Stack identifies no license, but WoC identifies
a permissive license. The third case involves the Stack iden-
tifying no license, while WoC identifies a restrictive license.
Finally, in the fourth case, the Stack identifies a permissive
license, but WoC identifies a restrictive license. Among these,
the second scenario does not pose a compliance risk and may
even be advantageous, given the problematic nature of reusing
code without a license, as previously discussed. However, the
first scenario still raises some concerns. The third and fourth
scenarios are particularly concerning as they indicate a high
risk of license noncompliance due to the blobs originating
from projects with restrictive licenses.

In summary, our analysis reveals that even the smaller
version of the Stack dataset contains hundreds of thousands of
blobs originating from projects with restrictive licenses, raising
significant legal compliance concerns for any LLM trained
on this dataset. These findings provide strong support for our
second hypothesis (H2).

Key Findings 2

1) 15.49% and 11.30% of blobs in the full and smol
datasets, respectively, have been reused at least
once. Among these, 64.41% and 61.78% have
origins that were misidentified.

2) 36.90% and 27.38% of blobs with misidentified ori-
gins have licenses that differ from those identified
in the dataset.

3) 12.88% and 17.17% of blobs with differing licenses
are subject to a restrictive license, presenting a
significant risk of noncompliance.

V. LIMITATIONS

A. Internal Validity

1) Impact of Buggy Code Removal on Model Outputs:
Eliminating all buggy code from pre-training or fine-tuning
datasets does not guarantee that the resulting LLM will gen-
erate bug-free code. However, it is reasonable to assume that
some generated code may replicate buggy patterns observed in
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the training data. Therefore, removing bugs from the training
data, especially through a low-cost approach like ours, is a
sensible step toward improving the model’s output quality.

2) WoC Dataset Coverage: Some code may originate out-
side public version control systems or may simply not be
included in WoC’s collection. However, as demonstrated with
the Stack v2 dataset, only 2.5% of blobs could not be linked
to commits already present in WoC, indicating that this is a
relatively minor issue.

3) Blob Updates and Quality: While updating blobs to
newer versions eliminates known bugs, it can occasionally
introduce new and unknown bugs. However, in most projects,
only a small proportion of bug fixes result in new issues or
fail to address the intended bugs. Consequently, applying fixes
generally enhances the overall quality of the training data.

4) Rebasing and Metadata Loss: Our approach relies on
git SHA-1 hashes to track blobs, which ensures that content-
based identification is robust to rebasing. However, rebasing
may obscure certain metadata, such as precise commit lineage,
which could limit the ability to fully trace the historical context
of some blobs.

5) Commit Keyword Usage for Fix Identification: Not all
commits containing the keywords we used represent bug fixes,
nor do all bug fixes include these keywords in their commit
messages. Despite this, applying all changes, not just those
identified as fixes, is likely necessary. These keywords and
similar ones have been widely used in prior research to identify
changes related to bug fixes. In our validation of 20 randomly
selected commits, only three (15%) were found not to be
clearly bug fixes.

6) Reliability of CVE Detection: Our method successfully
identified thousands of CVEs in the Stack v2 dataset, lever-
aging commit messages as a primary indicator. However, this
approach relies on the presence of explicit references to CVEs
in commit messages, which may not comprehensively capture
all vulnerabilities. For instance, CVEs that were not docu-
mented in commit messages or introduced through transitive
dependencies might be missed. Future work could address this
limitation by conducting a manual review of a representative
sample or validating the method against additional datasets to
evaluate recall more comprehensively.

B. Construct Validity

1) Impact of Dataset Vulnerabilities on Model Outputs:
This study assumes that vulnerabilities and flaws in training
datasets may influence the quality and security of model out-
puts. While this assumption aligns with logical inference and
prior research on LLM behavior, direct empirical validation
of this relationship is currently lacking and represents an
important avenue for future research.

2) Never-Modified Code Assumption: While we suggest
that never-modified code may indicate low use or untested
quality, this is based on logical inference rather than direct
empirical evidence. Future studies are needed to validate
whether unmodified code consistently correlates with lower
reliability or usability in practice.

3) Blob Origin Identification: Identifying the origin of a
blob is not always possible, particularly for blobs that did
not originate in open-source projects. Accurate identification
requires comprehensive access to all project data. However,
the extensive coverage provided by WoC significantly reduces
this risk.

4) License Applicability Assumption: The licensing as-
sumption for a blob is based on the identified license of the
project from which it originated. However, not all files within a
project necessarily fall under the project’s overarching license,
as some files may have distinct individual licenses.

C. External Validity

1) New Bugs and Iterative Updates: Even if all known bugs
are addressed at time t, new bugs will inevitably be discovered
at time t+1. Therefore, regular updates are necessary. Fortu-
nately, the approach outlined here can be automated, allowing
it to be efficiently applied to each new version of the WoC
dataset.

2) Updating to Latest Versions: The updated version of a
blob may not always represent the latest available version. As
a result, the process may need to be repeated iteratively until
the most recent fix is applied. The median timestamp of the
commits updating blobs was June 2020, indicating that these
updates were available well before the creation of the Stack
v2 dataset in 2024.

VI. FUTURE WORK

A promising direction for future work is the development
of automated curation tools specifically designed to enhance
the quality of datasets used for pre-training large language
models (LLMs) for code, such as Stack v2. Building on the
cost-efficient approach introduced in this paper, these tools
could automatically identify and apply patches for known fixes
or vulnerabilities, ensuring that the datasets include secure
and reliable code. They could also locate and update blobs
to their latest versions, minimizing the inclusion of outdated
or buggy code. Furthermore, the tools could enhance license
compliance by automatically detecting and removing code
with non-permissive licenses, ensuring that only code with
appropriate licensing is included in the dataset. The feasibility
of such automation is demonstrated by the scalability and
efficiency of our approach in handling large-scale datasets. By
automating these tasks, the proposed tools would streamline
the iterative updates required for maintaining high-quality
training data, ensuring practicality and cost-effectiveness in
preparing datasets for LLM pre-training.

VII. CONCLUSIONS

Processes to ensure provenance, security, and compliance in
SSCs are essential. This project sets the stage for future work
on the curating LLM training data and provide several insights
and interventions that can improve on the current state of the
art.

Several notable observations emerge from our analysis.
First, the largest open-source training dataset, Stack v2, con-
tains only a small fraction of all publicly available source code
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versions. These datasets could be significantly enhanced by
incorporating intelligently selected data from comprehensive
sources like WoC. Second, between 10% and 20% of the
versions have updates, even though the WoC dataset version
V3 is contemporaneous with Stack v2. Third, a substantial
portion of the training data includes files with known bug
fixes. While newer versions may incorporate updated APIs
or additional features, applying these bug fixes is crucial to
prevent LLMs from being trained on buggy code. Fourth, such
fixes can be leveraged to train or align LLMs that specialize
in generating changes or fixes. Fifth, training datasets should
prioritize heavily or moderately modified code, which often
has fewer bugs, rather than relying heavily on pristine, first-
version code that dominates many existing datasets. Finally,
misidentified code origins have resulted in non-permissive
code being included in these datasets, raising compliance
concerns.

Beyond improving the curation practices for LLM training
data, this work also introduces the concept of the LLM supply
chain, highlighting its similarities to and differences from
traditional software supply chains.

While our primary focus has been on data curation for
code LLMs, the insights generalize to any scenario involving
version-controlled data.
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