
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Applying the Universal Version History Concept to Help De-Risk
Copy-Based Code Reuse

Anonymous Author(s)
ABSTRACT
The ability to easily copy code among open source projects makes
it difficult to comply with the need to determine the provenance
of code essential for cybersecurity and for complying with the li-
censing terms. Such provenance encompasses the exact origin of
each component and its license, and various qualities of the com-
ponent, such as absence of vulnerabilities and high likelihood of
future maintenance. With the aim to address these challenges, we
created an approach supported by a tool prototype, UVHistory, that
links each piece of source code to all projects where it resides and,
also, to its version histories in all these projects. This combined
version history of a file from all open source projects we refer to as
universal version history. We exemplify UVHistory via scenarios
illustrating how it can help developers identify bugs and vulnera-
bilities and verify that license terms are not violated. Specifically,
using UVHistory, developers can find the origin of a file including
the open source repository where it originated, follow the evolution
of the file over time and across different repositories, identify which
authors have worked on a file, and read all the log messages for
any modifications to that file in any repository. We also evaluate
UVHistory in two contexts: to identify license non-compliance and
to find instances of unfixed vulnerabilities. We find that in active
and popular projects both problems are common and anyone can
easily identify them using our approach.

CCS CONCEPTS
• Software and its engineering→ Software libraries and reposito-
ries.

KEYWORDS
code reuse, software security, vulnerability, license
ACM Reference Format:
Anonymous Author(s). 2023. Applying the Universal Version History Con-
cept to Help De-Risk Copy-Based Code Reuse. In Proceedings of The 31st
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2023). ACM, New York, NY,
USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Version control systems were a major advance in software engi-
neering by automating storing and making accessible a complete

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

history of the source code within a repository. The rapid growth in
open source software (OSS) and its widespread use made obvious
the need to create Universal Version History (UVH) (a full version
history of a file across all repositories and revision histories where
either parents or descendants of that file reside). More recently,
the concept of a UVH appears to be articulated in “Improving the
Nation’s Cybersecurity” [42] order with the key component of “En-
hancing Software Supply Chain Security.” Specifically, “maintaining
accurate provenance (i.e., origin) of software, providing a Software
Bill of Materials, and ensuring and attesting to the integrity and
provenance of open source software used within any portion of a
product.” This recent presidential order highlights an issue, software
supply chain security, that has long been known to be important
for various reasons but which is often overlooked. In addition to
the security implications explicit in the presidential order, knowing
the software provenance and providing a software bill of materials
is also vital for ensuring compliance with license requirements,
finding additional useful features that may be available in different
versions of the software, improving code quality problems, and
addressing aspects of developer reputation. The realization of this
idea, however, depends on the ability to collect, clean, curate, and
integrate VCS data from over a hundred million of open source
repositories and remained out of reach for many years.

In this paper, we present an approach to produce a universal
version history which links files across multiple repositories and
multiple repository hosting platforms to construct a single history
by tracing the version of a single file across all repositories and
revision histories where either parents or descendants of that file
reside. We then show how this approach can reduce the risks of
copy-based code reuse.

Copying code for reuse in other projects is widespread [15, 20,
21, 29]. Much of the work on software supply chain issues, such as
security and license management, focuses on software dependen-
cies. A software dependency is generally considered an external
component (such as a library or package) that is used within a
project. When the external component is copied and committed
into a project’s repository, it is no longer an external component but
rather is now part of the project. This approach is sometimes called
clone-and-own [11] [12] [32] or vendoring [48] [3]. The cloned
component is clearly part of the supply chain, but is often over-
looked because it is considered part of the core project rather than
a dependency once it is committed into the project’s repository.
This clone-and-own method can cause problems with code main-
tenance because of the lack of information about the connection
between the clone and the original. In fact, as we show below, even
the originating projects sometimes do not contain public security
vulnerability fixes implemented in projects that copied the code.

Much of our work focuses on projects in languages like C and
C++ because they do not have a standard package manager system.
When using a package manager, it is easier to find the origin of

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

the code and any known vulnerabilities or license issues. However,
many projects using languages with good package managers don’t
take advantage of the package manager. Therefore, we also look at
languages like Java, JavaScript, Python, etc, that do have standard
package manager systems.

In order to understand and address the risks associated with
unknown provenance in open source software, we would first like
to create a tool that is able to automate the process of producing
a universal version history of a file across repositories and even
across repository hosting platforms. Such a tool, if widely deployed,
would inform developers about potential problems that might exist
in code that they would like to reuse. Second, we want to determine
if unknown provenance causes problems in real-world open source
projects. For example, are there potential license violations or se-
curity vulnerabilities that are unknown to developers wishing to
reuse code from another project? We find a large class of instances
where even the most advanced licence violation detection tools
can not (and do not) work because it is not possible to find such
violations without UVH. Third, we would like to see if constructing
a universal version history can help mitigate some of the problems
caused by unknown provenance. Forth, we want to determine if our
proposed tool detects different problems than popular dependency
management products and software composition analysis tools.
Fifth, we would like to see if our tool can produce useful results in
a reasonable amount of time.

To establish the feasibility of producing the universal version
history in general and in being able to address the issues related
to code copying, we introduce a prototype tool, UVHistory, which
automates the process of finding the universal version history of
a file across all open source repositories. We build on the World
of Code [23] infrastructure to discover and report the complete
history of code in any language from a nearly complete collec-
tion of open source software. The results can be used to look for
new features or functionality available in other revisions, look for
security vulnerabilities reported in other revisions, find which de-
velopers have worked on the code throughout its evolution, look
for license requirements that may have been lost as the code prop-
agated, and more. Also, different revisions can be compared with
public sources, such as the National Vulnerability Database, for
known vulnerabilities or other bugs. This version history tracks
changes to a specific file even when the file is copied to a new and
possibly unrelated repository, allowing a developer to trace changes
over time and across different repositories and different repository
hosting platforms.

Our work makes the following contributions:

• We propose a computationally feasible approach to pro-
duce a universal version history which links source code by
content and its modification history across multiple reposi-
tories and hosting platforms.

• We present a prototype tool, UVHistory, that implements
our proposed approach efficiently over the nearly complete
collection of open source software in World of Code. Our
tool is the first application of the universal version his-
tory concept using such a large collection of open source
software.

• We evaluate the application of the universal version his-
tory concept to address two specific software engineering
problems identified in this paper. We show that produc-
ing a universal version history can help mitigate problems
with potential license violations and security vulnerabilities
caused by copy-based code reuse.

• We show that the declared license of a project cannot al-
ways be trusted, andwe show how our tool can help identify
those projects with incorrect copyright and license infor-
mation.

The rest of the paper is organized as follows. We start with some
examples and usage scenarios that motivate our work in sections 2.
We present the universal version history concept in section 3 and
our tool in section 4. We show the research questions in section 5,
the evaluation in section 6, and we explore related work in section 7.
We present limitations in section 8, look at future work in section 9,
and conclude in section 10.

2 APPLICATION SCENARIOS
Source code with unknown history introduces risks such as the
possibility that the code could have been modified in ways that
unintentionally introduce security vulnerabilities or other bugs,
that intentionally include malware, or that violate license terms. In
this section, we describe in more detail specific scenarios where the
universal version history concept and associated tools help de-risk
copy-based code reuse.

2.1 Security Vulnerabilities
When a security vulnerability is discovered in open source soft-
ware, it is typically documented in the Common Vulnerabilities
and Exposures (CVE) system [41] maintained by The Mitre Cor-
poration. Developers know to look at the CVE system for possible
security vulnerabilities. However, when a vulnerable file has been
copied to other projects, those other projects may not be listed in
the CVE entry. When code with security vulnerabilities is cloned,
the target project may inherit the vulnerability. When the vulnera-
bility is found and fixed in the original project, the fix may not be
propagated to the clone, especially when the target project does
not maintain a link to the parent. Reid et al. [34] coined the term
“Orphan Vulnerability” to refer to these kinds vulnerabilities that
exist in copied code even after they are fixed in another project.
Our proposed tool would aid developers in knowing the origin and
history of the code, which would allow them to learn about the
reported vulnerabilities in the original project.

It is also possible that a vulnerability is found and fixed in a file
copied from an original project, but the fix is not back patched into
the original project. Woo et al. [44] reported an example of this in
the jpeg-compressor project [35]. CVE-2017-0700 [40] describes a
vulnerability in the Android System UI that allows remote code
execution. The file jpgd.cpp, which is the source of the vulnerability,
was copied from the jpeg-compressor project. The vulnerability
was discovered and reported in the Android source code [2], and
a CVE was created. However, the vulnerability was not reported
and not fixed in the jpeg-compressor project, which is the original
source of the vulnerable file in Android. Therefore, developers who
copy and reuse the Android code can easily find the vulnerability

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Applying the Universal Version History Concept to Help De-Risk Copy-Based Code Reuse ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

and the patch. However, developers who copy the jpeg-compressor
project are not easily able to find out about that vulnerability, which
was found and fixed in a derivative work. Clearly, it is not safe to
assume that the original source is the best or most secure version.
Our research aims to aid developers in finding not only the origin,
but all revisions of a file across all open source repositories.

2.2 License Compliance
Another concern about copied code is license requirements. If a
developer wishes to reuse software, it is important to understand
the license terms of the original code. Trusting the declared license
terms is not always safe. In some cases, the complete license infor-
mation is not copied with the code. We found many such cases. As
just one example, libofa [27] contains license information in a file
named COPYING in the top level directory. But the license infor-
mation is not included in every source code file. Our UVHistory
tool found several cases where projects copied the source files from
libofa without copying the file that contains the license information.
The result is that a developer who copies the copied code without
knowing the origin will not have the license information, resulting
in a potential license violation. It is important to understand the
origin of the code being copied in order to comply with the license
terms.

The 2021 Open Source Security and Risk Analysis report (OS-
SRA) [39] indicates that 65% of the codebases audited in 2020 have
license conflicts with open source software. Knowing the license
requirements can be complicated when a developer reuses an open
source project which itself reuses components from other projects.
In some cases, the original license information is not propagated
with the code, which means that the necessary knowledge required
to answer the license question is not available to the developer,
making it practically impossible to comply with the license re-
quirements. Therefore, finding the history of open source code is
critical to understanding and complying with license requirements
of reused code. The tool we present later in this paper, UVHis-
tory, traces a file to its origins which helps identify missing license
information.

2.3 Additional Scenarios
Our paper focuses on addressing security and licensing concerns.
The universal version history concept can be valuable in other areas
as well, including identifying other code flaws, such as defects, in-
compatibilities, or even missing functionality. It may even support
better author attribution considered an important motivation for
open source developers [1]. We briefly describe those scenarios
here, but leave in-depth study of these areas for future work. Find-
ing the complete file history, including all ancestor and descendant
code, can be valuable for finding additional useful features available
for a piece of software. Source code is often copied into different
projects and then improved for use in that project. These useful en-
hancements or fixed bugs would often be valuable to other projects,
but maintainers of other projects are often unaware of them. An
old clone may be missing the latest enhancements/fixes that could
add improved quality, functionality, performance, or other benefits.

Widely copied code may indicate its high utility or other aspects
of quality. Knowing which developers have worked on the specific

code in question can help build trust in that code. It may also serve
as an indicator of popularity for other developers who may benefit
from the widely used functionality implemented in such code. As
such, a tool such as the one we propose here could serve as a
component of a code recommender system. The tool could also
be used to identify the developers who create such widely used
code and help increase their reputation, direct support, or other
resources, to motivate such production.

3 UNIVERSAL VERSION HISTORY CONCEPT
The concept of a universal version history(UVH) is to track the
evolution of a source code file across multiple repositories. It is
the documented history of a file that has been modified and poten-
tially copied across different repositories which may be hosted on
different repository hosting platforms. This documented history
includes verifiable information about revisions to the file, dates
of those revisions, log messages for every revision, and the chain
of custody (who wrote the code, who revised the code, and what
projects included the code).

It is worth defining UVH more precisely and comparing to a
common version control system such as git. The essential entities
are versions of the source code (blobs). In git, each blob can be
associated with all versions (commits) of the repository where it
is present, and each version may be associated with one or more
filenames (including the full path from the root of the repository).
The blobs associated with such file with a pathname can be used
to determine a version history of a file (and git provides several
heuristics methods on how to do that: the lack of determinism of
file history arises with merges). A particular commit “creates” a
blob if either there was no such file in the previous version (parent
commit(s)) or if the previous blob was different. We can thus use
the time of the first commit creating a blob (the same blob can
be created multiple times in different folders or even in the same
folder) to obtain the time when blob was introduced to a repository.
Furthermore, each time a blob is created by a commit, we link it
to old blob: a blob (if any) that exists in the parent commit for
the same filename. Hence within a repository is simply a graph
linking each blob to the “old blob” and to commits that created
it (including all commit attributes such as time, author, commit
message, and the pathname of blob-associated file). Notice that
it is a bit different from version control systems such as CVS or
SVN, where versions of individual files are tracked. Notice that
the resulting graph has several distinct kinds of nodes (e.g., blobs
and commits), and multiples types of links (e.g., blob to old blob,
commit to parent commit, and blob to creating commit). In UVH,
we simply add one more type of node: a repository. Each repository
is linked to all commits within that repository and, transitively, to
all blobs contained therein. Blobs, on the other hand, are linked to
all commits in all repositories. The first creation time for a blob is
defined the same way. We thus can identify the original commit
and original author for every version of the source code in WoC. In
addition to the time of the commit, a partial temporal order based
on the old-new blob relation is available. Section 8 discussed in
more detail how we handle potentially inaccurate time recorded
in git commits. Notably, as we expand the scope of UVH across
repositories we loose some aspects of a sequence. For example, let

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

blob 𝑎 be first created in repository 𝐴, then in 𝐵, and lastly in 𝐶 . In
such case, without additional information (who did the commit and
what other blobs were created) it would be impossible to determine
if repository 𝐶 got the blob from repository 𝐴 or from repository
𝐵. For some applications, determining if the blob came from 𝐴 or
𝐵 is not as important as identifying licenses, vulnerabilities, or
other attributes of the blob that may vary among these various
repositories. In cases where knowing the true origin is critical, the
UVH reduces the search space required so that manual inspection
is feasible. The tool cannot know the origin for sure, but can point
to the earliest commit into a public repository.

The universal version history (especially in combination with
techniques employed in Mining Software Repositories field) can
be used to find or infer other information about the code such as
copyright notices and license information, the reputation of the
authors, the quality of the code, what coding standards were used,
the use of (or lack of) secure coding standards, what vulnerabilities
have been reported, what test methods were used, what security
assessments and were done, the location where it was developed
and modified, the trustworthiness and reliability of the code, and
the likelihood that the project will continue to be maintained.

4 THE UVHISTORY TOOL
UVHistory is our tool for automating the process of tracking changes
across all open source repositories and their version histories by
operationalizing the universal version history concept introduced
in section 3. It supports the study of issues concerning code reuse
in real-world open source projects.

4.1 Infrastructure: World of Code
Before describing our tool, we need to introduce the infrastructure,
World of Code, on which our tool is built. World of Code [24] is
a nearly complete collection of all publicly available open source
software. Software source code is periodically collected from many
sites including GitHub, Bitbucket, SourceForge, and many others.
The software is then curated and stored using methods that allow
for efficient searching of the very large amount of source code col-
lected. World of Code, which aims to support research in software
engineering, currently contains over 20 billion Git objects with over
100 million unique public repositories (not including forks or empty
repositories) [45].

This World of Code infrastructure, with its extensive collection
of open source software, allows us to find code duplication across
projects where no link to the origin exists on a scale that is not
possible without this kind of infrastructure.

4.2 UVHistory
UVHistory takes as input the contents of a file and finds all duplicate
versions of that file or any revision of that file across all of the open
source software available in WoC.

UVHistory specifically looks for source code from open source
projects that is copied and committed into different projects. This
approach is different than most existing tools for identifying vul-
nerabilities and licenses which look for external libraries that are
linked in or look at package management systems for dependencies.

Some systems tie into the build process and detect any libraries or
other third-party dependencies. But these approachesmiss code that
is copied and committed into the source code repository without
any link to the original project. Our tool is different than other
tools in that it is specifically designed to find these kind of file-level
copy dependencies that have no link to the original project and are
therefore missed by existing tools.

Since World of Code archives source code repositories over time,
we are able to trace the history even to projects which are no longer
available on public source code hosting platforms.

4.3 Algorithm
For simplicity we assume that our algorithm is provided one or
more sha1 hashes computed via the method used by Git. A user
of our tool may, instead, provide an entire repository or a specific
file name within a repository. In that case we have simple scripts
that collect either the complete set of blobs in a repository or a
complete set of blobs associated with a particular filename. In any
case, we start with one or more sha1 hashes as input. These hases
correspond one or more blobs, which is our seed list from which to
start finding more files in the universal version history.

Next, we use WoC’s blob to old blob mapping recursively to
find all ancestor blobs. Similarly, we use WoC’s old blob to blob
mapping recursively to find all descendant blobs. For each blob, we
use WoC’s blob to commit mapping to find all commits containing
any of the blobs that have been found. We now have all commits
for all revisions of the file across all source code repositories. The
commit gives us the time, author, pathname, and log message for
that revision of the file. From the commit, using WoC’s commit to
project mapping (c2P), we find all projects which contain a revision
of the given file. Now we have the information needed to construct
a link to that revision of the file on the repository hosting platform
(such as GitHub, Bitbucket, SourceForge, etc). The final output of
the tool shows the complete history of the file with all ancestor and
descendant revisions across all repositories. The history includes
the author of each revision, the date it was committed, the log
message of the commit, the link to the original source of the project
of which that revision is a component if the project is still publicly
available and accessible, and a link to the specific revision of the
file on the hosting platform (if available).

For each blob, we sort all of the commits for that blob in date
order. We then sort the blobs by the date of the earliest commit
of that blob. The date we use is the date in the Git commit. It is
possible that the date in the Git commit is not correct. We look for
obvious discrepancies; for example, values of 0 or dates that are in
the future are clearly not correct. In addition, if we see a date that is
before Git was released in 2005, we flag it as suspicious. It is possible
that the early date is correct, as it may be a file that was migrated
from a different source code control system such as SVN or CVS.
We also flag any dates prior to 1990 when CVS was introduced,
as it is somewhat unlikely that any date prior to the introduction
of CVS is accurate. We cannot guarantee that the date in the Git
commit is correct, which we note in the limitations section.

When identifying projects in the universal version history, we
want to find distinct projects. GitHub projects often have many
forks, sometimes tens of thousands. Most of those forks are not

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Applying the Universal Version History Concept to Help De-Risk Copy-Based Code Reuse ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

independent projects; many were only created for the purpose of
issuing pull requests to the original project. Showing tens of thou-
sands of related forks makes it far more difficult to find the useful
information. Using the community detection algorithm described
in [26], WoCmaps each Git repository to a central repository which
is expected to represent the same project. This mapping in WoC
allows us to create a list of deforked projects. UVHistory displays
the deforked projects on the main page and then includes a link
to a secondary page that contains a list of all projects, including
(possibly irrelevant) forks.

4.4 Output
Our final output contains:

• A list of all blobs in the universal version history. The list is
sorted by date in reverse chronological order. The blobs are
named by the sha1 hash of the blob as computed by Git.

• For each blob, a list of all commits of which this blob is a part.
The commits are named by the sha1 hash of the commit
as computed by Git. The commit information includes the
author, time of commit, and the commit log message.

• For each commit, a list of all of the projects where this
commit was applied, the full pathname of the file, and the
URL linking to the file on the source code hosting platform
(note that the link may be dead if the project is no longer
publicly accessible).

5 RESEARCH QUESTIONS
In this section, we present four research questions and the research
methods used to address each of the questions. Our study is de-
signed to show the relevance of the problem presented and also to
evaluate the effectiveness of our proposed solution. The results are
presented in section 6.

Our goal is to see if constructing a universal version history
across repositories and across hosting platforms can help solve the
class of problems presented earlier in this paper. We specifically
look at two of the problems mentioned earlier: potential license
violations and security vulnerabilities. The other issues are similar
and can likely be solved in a similar way, but we leave those for
future work.

RQ1: Can the declared license in an open source software be
trusted?

The aim of this question is to see if it is common in real-world
open source software projects for code to be copied from other
projects without the correct copyright and license information be-
ing retained and without a clear link back to the original project
where the copyright and license information can be found. When
code is copied, is the correct license information copied along with
it, or if not, is the correct license readily available. We are specif-
ically looking for real-world projects, not toy projects or student
assignments.

If we can trust that the license information provided in projects is
correct, then finding the universal version history is not necessary
to be able to properly understand and comply with the license
terms. If, however, we find that there are frequent license violations
due to missing or incorrect license information in popular open
source projects, then we will conclude that it is worth our effort to

find ways to mitigate the problem. The specific problem we want
to mitigate is the problem of copying code without knowing or
without having an easy way to find the correct license terms for
that code. We want to determine if there is real-world benefit in a
tool to help mitigate this problem.

Our research method to answer RQ1 was an exploratory study
designed to see the extent of of the problem. We examined open
source projects which have copied code from popular open source
projects to see if the correct copyright and license information was
propagated along with the copied code. We developed some tools
to select a set of projects that are likely to contain license problems.
We then manually inspected that subset.

RQ2: Can our UVHistory tool, by constructing a universal ver-
sion history, help identify projects with missing copyright and
license information and help find the correct information for the
given code?

It is important, when reusing software, to comply with the li-
cense terms. One cannot comply with terms of which one is not
aware. Reusing software without knowing the correct license terms
can cause someone to infringe intellectual property without being
aware of the infringement. We want to see if our tool can help
developers identify when correct license terms are missing and
help them find the correct license.

Most open source licenses require the copyright and license
information to be retained. Cases where projects copy code, but
omit the copyright and license information, is a clear violation of
the license.

We used a case study to answer RQ2. We studied two cases
where license information was not properly propagated. The two
case were selected from results of the study for RQ1. The case study
method allowed us to look in-depth at two specific projects.

RQ3: Can our UVHistory tool, by constructing a universal ver-
sion history, help identify projects which are subject to security
vulnerabilities that have been found and fixed in another project
but which still persist unknowingly in other projects.

Previous research [34] [44] [8] has identified this as a real prob-
lem in popular real-world projects. Due to the seriousness of this
problem, a tool that could help mitigate this problem would have
value.

We answered RQ3 with another case study. This case study
examined a case we introduced section 2.1 as one of the motivating
examples. Again, the case study method allowed us to have an
in-depth look at a project. This time, the project studied contained
a known security vulnerability propagated through code reuse.

RQ4: Is the performance of UVHistory such that it can run in
reasonable time on commodity hardware for source code files in
typical open source projects?

In order to have practical value, the tool needs to be able to pro-
duce results in reasonable time on reasonably affordable hardware.

Our final RQ is addressed with a simple study to examine the per-
formance of our prototype tool on common projects using specific
hardware.

6 EVALUATION
We evaluate our method and tool by answering each of the four
research questions, and we present the results in this section.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

6.1 RQ1: Can the declared license be trusted?
To answer our first research question, we searched for cases where
code was copied from one project to another, but the copyright
and license information was not copied. We were not looking for
projects that used package managers or linked to external libraries,
but only cases of code cloned from one project and committed into
the repository of another project.

We selected a small subset of projects to investigate inmore detail.
We randomly selected 100 source code projects from GitHub which
include a top-level file named LICENSE.txt containing a license
that requires copies to retain the copyright notice, had no reference
to copyright or license information in the individual source code
files, and had more than 1000 stars. We chose projects with a top-
level LICENSE.txt file because it is common for projects to put
the license information in a single file in the top-level directory
of a repository and not duplicate the license in every source code
file. LICENSE.txt is one common filename used for the license file.
When the license information is not included in every source code
file, it is easy for a developer to copy a copyrighted source code
file without copying the relevant license information. We limited
our selection to repositories with more than 1000 stars so that we
would find popular projects [4] that are likely to have files that are
copied into other projects. The selected projects were composed of
projects in a variety of languages and using a variety of licenses.

For each of the 100 projects, we used our UVHistory tool to
trace the history of one of the files in the project to find other
projects which had copied code from the original project. We then
checked those other projects to see if the copyright and license
information had been propagated to the new project. In the few
cases where there were more than 500 clones of a project, we limited
our search to the first 500. Because of the manual work involved
in investigating each license, we had to limit the scope. We looked
at 100 original projects and up to 500 clones of each of those 100
original projects.

Our procedure for finding out if the projects containing cloned
code also contained the proper license was as follows: First, we
used UVHistory to find projects containing copies of the code in
question. Next, we used a tool we developed (also layered on top
of World of Code) to find all licenses used in a project. The tool
used the winnowing algorithm [37] to find the most similar license
from among 1862 licenses provided by spdx1 for each blob in a
project. The winnowing algorithm relies on extracting a collection
of signatures from text andmatching them among documents (blobs
in the project and blobs representing licenses). We compared the
known license in the original project to the licenses found by our
tool to see if there was a match. If there was an exact match, then
clearly the license information was correctly propagated with the
code. If there was not a match, we manually inspected the project
to make sure that, in fact, the correct license was not included. We
also checked to see if the project was still publicly available, as
World of Code will still have information about removed projects
but we only care about projects that are currently publicly available.
If neither our tool nor our manual inspection found a match, then
we conclude that the correct license information is not properly
included.

1https://spdx.org/licenses

In 76 of the 100 projects, we found at least one case where code
from that project had been cloned to another project. In 54 of the
100 projects, we found at least one case where another project
had copied the code but had not copied the copyright and license
information and did not include an obvious link back to the original
project where the copyright and license information could be found.
In total, we found 3,431 projects which had cloned code from one
of the original 100 projects (Note that our 500 project limit reduced
that total). We found that 1,132 of those projects did not properly
retain the copyright and license information.

The answer to RQ1 is clearly no, the declared license cannot
always be trusted. License violations caused by license omission are
common in real world projects since we found a high percentage of
popular projects where code is copied but the license and copyright
information are not retained (as required by the license) and there
is no link from the copied project back to the original project where
the license can be found. These non-compliant projects are publicly
available, which means that someone might very well copy and use
the code without being aware that they are violating the license
terms.

The answer to RQ1 suggests that future work involving a large
scale empirical study concerning license omissions in cloned code
would be valuable.

6.2 RQ2: Can UVHistory help with license
compliance issues?

Based on the answer to RQ1, someone who wants to reuse code
from one of these non-compliant projects would have no easy way
to know the license terms that must be followed unless they ob-
tained some additional information. Our second research question
considers whether our UVHistory tool can provide the additional
information necessary to ensure compliance. To answer this ques-
tion, we look in detail at two specific projects chosen from the ones
identified in the section above.

The first project chosen was AIOHTTP2, an asynchronous HTTP
client/server framework. We chose AIOHTTP because it has over
12,000 stars on GitHub, indicating it is a very popular project likely
to be copied, and because it has the Apache license which is a very
common license which requires the copyright notice to be retained
in all copies. We have already discovered, in answering RQ1 above,
that there are projects which reuse AIOHTTP without following
the license terms that require attribution. To answer RQ2, we want
to find out if UVHistory can confirm that proper license terms are
followed or, if not followed, find the correct license for the project.
We start with projects that we know, from our study of RQ1, do not
comply with the license requirement to include the copyright notice
and do not provide a clear link to the original project that contains
the correct license terms. There are many cases of projects that
use AIOHTTP without retaining the copyright notice as required.
We pick just one, Hackathon-Torrent3, to show that UVHistory is
able to identify the correct license and copyright notice that should
be included with any reuse of this project. Running UVHistory on
a source code file in the Hackathon-Torrent project, we find the
AIOHTTP project as the project in the universal version history

2github.com/aio-libs/aiohttp
3github.com/AdoenLunnae/Hackathon-Torrent/

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Applying the Universal Version History Concept to Help De-Risk Copy-Based Code Reuse ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

with the earliest date. Following the link produced by the tool
takes us to the AIOHTTP project on GitHub where the license and
copyright information is very clearly available. This means that
someone wishing to reuse the Hackathon-Torrent project could
very easily, by looking at the universal version history produced
by UVHistory, find the correct license and copyright information
that is missing from Hackathon-Torrent.

The second project chosen was VirtualXposed4. We chose this
project because it is widely copied and because it has a commercial
license. The commercial license is particularly problematic when
copied into open source projects, especially when the license infor-
mation is not propagated with the copy. We traced the code from
the VirtualXposed project to it’s origin, which is VirtualApp5. Virtu-
alApp’s README is very clear that in order to use this software you
must purchase a license. However, VirtualXposed includes the GPL
license in it’s LICENSE.txt file, which would make it appear that it
is available under GPL, but that is not completely correct since it
also include commercially licensed code. VirtualXposed has more
than 15,000 stars on GitHub and more than 2,000 forks, indicating
that it is a widely used and copied project. Following the history
of the project produced by UVHistory, we find several copies of
this code that include an open source license such as Apache or
no license at all. Without a tool like UVHistory, there would be no
way to know that these copies of VirtualApp are restricted by a
commercial license. Some examples of projects that do not prop-
agate the commercial license follow. We only list a few examples,
there are many more than what we have listed here. VirtualDump6
contains copies of some of the code that originated in VirtualApp,
but it does not include any license information or any link back to
the original VirtualApp project. YCVaHelpTool7, which also uses
code from VirtualApp, includes the Apache license in a file named
LICENSE. There is no mention of the VirtalApp or the commercial
license, leaving a developer wishing to reuse the code assuming that
it is available through the Apache license. Following the universal
version history to the origin again leads to the correct license and
copyright information.

The answer to RQ2 is yes, the universal version history can help
identify missing license information and find the original project
containing the correct license information. We demonstrated that
our UVHistory tool can effectively find the original project, allowing
developers wishing to reuse code to be able to find the correct
license information.

We contacted the project maintainers of these projects to report
license issues.

6.3 RQ3: Can UVHistory help identify projects
with security vulnerabilities?

To answer RQ3, we follow a similar procedure as for RQ2, except
we look at projects with known security vulnerabilities rather than
potential license violations.

In section 2.1, we used a security vulnerability in a jpeg compres-
sion library as a motivating example for this work. That case was

4github.com/android-hacker/VirtualXposed
5github.com/asLody/VirtualApp
6github.com/LiveSalton/VirtualDump
7github.com/yangchong211/YCVaHelpTool

particularly challenging because the fix for the vulnerability was
not in the original project from where the code came, but rather
in a project that had reused the vulnerable code and then fixed it.
Thus finding the origin is not enough, we also need to look at other
projects in the history. The specific example we look at, Entropia
Engine++8, is a cross-platform game and application development
framework. With recent commits and a number stars it appears to
be a reasonably active and popular project. It reuses the vulnerable
file jpgd.cpp. The header comment in that file references the jpeg-
compressor project from where the code was copied. A developer
wishing to reuse Entropia Engine++ could easily know from where
it was copied. However, the CVE identifying the vulnerability lists
the Android System UI9 where the vulnerability was fixed. There
is no clear way for the developer reusing it to know that it in fact
contains the vulnerable version of jpgd.cpp. This is where UVHis-
tory proves its value. By finding the universal version history using
UVHistory, we are able to see not only the original jpeg-compressor
project, but also other projects which reuse it, including Android.
Searching the universal version history for common strings like
“CVE” or “vulnerability” finds hints about potential problems. In this
example, we find 2 hits when searching for “vulnerabil”: “38889eb
Fix series of JPEG vulnerabilities by xxxxx” and “890381c Fix secu-
rity vulnerability by xxxxx”10, both from the Android project. This
allows a developer wishing to reuse Entropia Engine++ to find the
potential vulnerability CVE-2017-0700 by searching the universal
version history. Commit 38889eb fixes this vulnerability.

We contacted the project maintainers of the project with the
cloned vulnerability to let them know about the issue. The issue
was fixed on June 28, 2022 by updating to a new version of jpeg-
compressor, so the project is no longer vulnerable.

6.4 RQ4: Is the UVHistory prototype feasible?
Our final research question considers performance. We want to
understand if it is feasible to effectively identify code history across
repositories on such a large scale.

Our tests were performed on a machine with Intel(R) Xeon(R)
Gold 6148 CPUs running at 2.40GHz. We limited our program to 16
threads running in parallel to limit the load on the machine which
is in heavy use by multiple users. As a prototype tool, UVhistory
is not optimized for performance. Increased parallelism and other
enhancements would improve performance.

By leveraging the World of Code infrastructure, which has al-
ready curated the data and stored useful information in a database
which can be efficiently searched, we are able to produce results
relatively quickly. We looked at the timing on the 100 cases selected
for RQ1. Our timing results varied greatly based on how many
different projects contain a cloned version of the file in question.
Most of the projects in our 100 cases had less than 500 clones. The
elapsed time for a case with 187 cloned projects was 9 minutes. The
worst case, which found clones in well over 10,000 projects, took
just under 3 hours. Thus we conclude for RQ3 that, yes, UVHistory
is able to finish in practical time.

8github.com/SpartanJ/eepp
9source.android.com/security/bulletin/2017-07-01#system-ui
10Author names redacted for privacy

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

6.5 Evaluation of Existing Tools
The goal of our tool is similar to that of Software Composition
Analysis (SCA) tools, but our methods are different and therefore
help developers find issues not found by SCA tools. SCA tools
identify the open source software in a codebase in order to find
security, license compliance, and code quality issues. In this section,
we identify existing tools, describe a test case we set up to test those
tools, and then present the results of the test.

Current open source SCA tools that detect license compliance
issues look at licenses that are explicitly declared in a project being
reused through code clones or through a package manager. They
trust the declared license in a project or source code file. What they
fail to find are cases where code is copied from project to project
multiple times, and sometimes modified, without the license infor-
mation also being copied. The history is lost, making it impossible
to find the original license. Commercial tools are harder to evaluate.
Some tools claim to find clones from a large collection of open
source software, but we do not have access to that collection and
cannot evaluate its completeness. Most tools appear to trust the
declared license without searching for the origin of the cloned code.
We tested some of those tools, both open source and commercial,
and present the results below.

Similarly, with vulnerabilities, current open source tools fail to
trace the history as a file is modified and copied across repositories,
and therefore often miss vulnerable code that has been copied from
a known vulnerable project to a different project. Our research
shows that cases like this are common, and that our tool can help
identify these cases. Again, commercial tools are harder to evaluate.
Most appear to have the same limitations. We tested several using
a our example project containing a cloned vulnerability.

We created a small test case example project where we built a
very simple HTTP client and server using code cloned code from a
vulnerable version of aiohttp11 (a project which we identified when
we collected data for RQ1). We cloned only the directory that con-
tains the source code, but we did not clone the top-level directory,
which contains the License.txt file. We added an MIT license for
our example project. Our project cloned v3.7.3 of aiohttp, which is
subject to the vulnerability described in CVE-2021-21330. Anyone
wanting to reuse our project would assume everything in the repos-
itory is available under the MIT license. It is not immediately clear
that parts of the project are actually subject to a different license.
Additionally, the project contains a known vulnerability, but our
project is not listed in any CVE entry. This example project mimics
real-world cases that we found in many open source repositories.

Popular free dependency checker tools such as GitHub Depen-
dencyGraph [16], Dependabot [10], Google Open Source Insights [18],
and OWASP Dependency-Check [30] rely on supported package
ecosystems that use a supported file format because they rely on
the packaging information to find the dependencies. This means
that languages like C and C++, which don’t have a standard pack-
age management system, are not well supported by these kinds
of tools. Even projects using languages that have popular package
management systems sometimes copy and commit the code into
their own repositories rather than using the package management
system. In our tests using our example project, none of these 4 tools

11github.com/aio-libs/aiohttp

detected the license or security issue. This is as expected since our
example uses cloned code rather than a package manager.

We next tested two commercial SCA tools: FOSSA12 and Snyk13.
We chose those two because they were listed in "The Forrester
Wave"14 2021 Q3 Report as having strong market presence, and
they have free downloadable trials available. We did not look at
commercial tools that do not provide a free download of a trial
version. While it is harder to know the exact capabilities of closed
source tools, the public documentation and trial versions give us
good insight.

FOSSA traditionally relied on package manager information
to find license compliance issues. They recently announced (on
November 1, 2022) support for “vendored code” (what we in our
introduction call “clown-and-own or vendoring”). We tried out their
free version (which supports license compliance but not vulnera-
bility management) on our example project. Using FOSSA’s new
option –experimental-enable-vsi (which enables vendored source
code identification), FOSSA did not detect the missing license in-
formation from the cloned file we inserted.

Snyk provides tools which address both security vulnerabilities
and license issues. Synk’s free version does not support license com-
pliance, so we signed up for their 14 day free trial, which supports
both vulnerability management and license compliance. We ran the
test with our example project described above and Synk did not
report the license violation or the security vulnerability.

Our tool’s purpose is to help developers find the provenance
(history and chain of custody) of a file, which can help them find
security and license issues.Wemake no claim that our tool competes
with these very impressive SCA tools. We only claim that it can, in
some specific cases, help a developer find an issue that SCA tools
miss.

7 RELATEDWORK
7.1 Universal History
Early work on finding a complete version history was conducted
by Chang and Mockus [5]. They looked for cases where directories
of source code contain many files with the same names and then
compared those files to find clones. The matching files and their
version histories were used to construct the file history. In follow-up
work [6], they proposed a large-scale copy detection and validation
process and improved reuse detection. Mockus [25], using the same
algorithm, found significant large scale code reuse where many
files were copied. At the time of their work, there were no complete
collections of open source code like World of Code, which limited
their work to a small number of repositories and only worked when
multiple files in a directory were duplicated and the filenames did
not change. They concluded that there was still a challenge to scale
the work to very large numbers of open source repositories [6].
World of Code provides the infrastructure to meet that challenge,
which is the goal of this work.

12https://fossa.com
13https://snyk.io/
14forrester.com/policies/forrester-wave-methodology/

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Applying the Universal Version History Concept to Help De-Risk Copy-Based Code Reuse ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

7.2 Large Scale Software Archives
World of Code [45] and Software Heritage [38] provide large scale
code archives. Our tool is built on World of Code, which we de-
scribed earlier. In this section, we look at related work that uses
Software Heritage.

Software Heritage Graph Dataset [31] links together source
code file contents, which allows duplicate code to be found across
projects, much like what is provided by the World of Code data
maps that we use. What they do not include is the linkage of the
history of each file within a project to all other projects containing
any version of the file. This linkage is what UVHistory provides.

Provenance work by Rousseau et al [36] using Software Heritage
looks at occurrences of the “exact same file content.” They specifi-
cally state that they do not look at “predecessors or successors in
a given development history” and that that is “outside the scope
of the present work”. The strength of our work, and much of the
effort to produce it, comes from tracing the full history by following
the predecessors and successors, thus giving us a complete history
that follows the evolution of a file as it changes over time, not just
instances of exact copies.

7.3 Tracking Code Changes
Kawamitsu et al. [21] proposed a technique to find which file revi-
sion a copied file comes from in another project for the purpose of
keeping copies up-to-date. They aimed to identify which revision
of a file was reused and how that file was modified over time. Their
method only looked at project pairs to find files that were copied
from one project to the other, but it cannot handle a large num-
ber of projects. Ishio et al. [20] expanded on the idea of tracking
code changes by taking a set of source files in C/C++ and Java and
finding files that are likely to include the original version of the
file. They look at a relatively small subset of projects compared
to what is available in World of Code. They note that tracking
file changes across repositories is tedious. We further expand code
change tracking by using World of Code’s massive collection of
projects to track modifications to files in any language across a
nearly complete collection of open source software.

7.4 Finding File Origin
Xia et al. [47] looked at reuse of third-party code and found that
18.7% of the projects studied copied only the source file but no com-
panion files like readme or changelog files; therefore, the version
information and links back to the original project are lost. This is
particularly relevant to our study of license terms as the license and
copyright information is often only in the companion files. They
also discovered that third-party code is sometimes mixed with other
third-party code, making it even harder to trace each file back to
its original project.

Inoue et al. [19] designed and implemented a tool that used
source code search engines to take source code fragments and find
sets of cloned code fragments in order to track the history of the
code. Limitations of those search engines, such as only allowing
keywords and/or code attributes as their inputs or not allowing auto-
mated queries, posed challenges to the tool. The source code search
engines they used (Koders, Google Codesearch, and SPARS/R) are

no longer available. We use World of Code, which is currently
actively maintained.

Davies et al. [9] introduced a method to reduce the search space
when looking for the origin of a piece of code in cases where a direct
link to the origin is not clearly available. Once the search space
is reduced, manual inspection or other expensive methods can be
used to identify the origin from the reduced set. They demonstrated
their method on a collection of Java files.

Godfrey et al. [17] pointed out that it is becoming increasingly
important to determine the origin of software in cases where code
is cloned into a new project with no clear link to the origin, but
that effective techniques for finding such code provenance do not
yet exist. We aim to help fill the gap that they identified.

Woo et al. [44] proposed an approach to find the original software
where a vulnerability originated. They noted that many CVE [41]
reports do not give the correct origin of the vulnerability. Finding
the true origin can help mitigate further propagation of the security
risk. Their method uses function-level clone detection methods,
which can be more precise, but not as efficient at large scale as
the file-level clone detection we use. They only used about 10,000
projects, and only from GitHub, for their evaluation.

7.5 Security Issues
Davies et al. [8] performed manual license and security audits in
real-world applications and found potential legal and security issues
in some of the studied applications.

Kula et al. [22] looked at Java projects that use a dependency
management tool and found that 81.5% of projects in their study still
have outdated dependencies, many with security vulnerabilities.
They also, through surveys, found that 69% of the developers were
not aware of the vulnerability. We hypothesize that the number of
outdated cloned copies of files that have no link back to the origin
would be even higher.

Chen et al. [7] designed and implemented a machine learning
system to help identify which libraries in open source dependencies
contain vulnerabilities listed in the National Vulnerability Database
(NVD) [28]. It relies on package management systems including
Maven Central, npmjs.com, and PyPi.

7.6 License Compliance Issues
German et al. [14], through an empirical study of license issues
in open source projects, show instances of incompatible licenses
when open source code is reused in different projects. They found
that there are often mismatches between the declared license of
a package and the license of the source code within the package,
and also incompatibilities between packages contained within one
project. They note that auditing of license issues is “quite complex”
and suggest that improving automation is this area would be bene-
ficial. This kind of automation improvement is exactly the aim of
our work.

Wu et al. [46] looked at license inconsistencies within large
projects. In their conclusion and future work section, they say
“These problems highlight the need for a method to find and main-
tain provenance between applications”. Our work, using World of
Code, looks for inconsistencies across all open source projects as
they suggest.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Wolter et al. [43] found that the license declared at the top-level
of the repository does not always match the license found in source
code files.

Qiu et al. [33] looked at dependency-related license violation and
report a relatively small number of dependency-related violation
in npm. The small number is in part because permissive licenses
are more common in npm. Our work looks at code clones rather
than dependencies.

The work cited in this section finds license inconsistencies. That
is similar to our work, but what we are looking at is slightly differ-
ent. We are looking at cases where the license information is not
retained when code is cloned from one project to another, possibly
multiple times, and there is no clear link back to the original project.
Without being able to trace the history of the file across reposito-
ries, someone reusing one of these projects with missing license
information would have no way to know that they are violating
the license when they reuse the code.

8 LIMITATIONS
Our UVHistory tool uses the vast source code archive in World
of Code to find clones of open source code. The tool will not find
clones of code that are not included in the World of Code data.

If a source code file has been identified as containing a security
vulnerability, the project using that file might be subject to the vul-
nerability. However, the project might not be using the vulnerable
file in a vulnerable way. Our tool can help identify if vulnerable
code is included in a project, but cannot identify whether it is used
in a vulnerable way.

The tool trusts the timestamp and author information in the
Git commit. There are occasional cases where that information is
not correct. Flint et al. [13] demonstrated that while timestamps
are usually accurate, there are unusual cases where the timestamp
is not correct. We used the reported suggestions and additional
techniques, like identifying unreasonable (empty, too old or two
new) and inconsistent (parent commit occurring after the child
commit) time stamps to weed out some of the problematic commits.

Additionally, the first commit may have borrowed from a source
that is not in World of Code (like Stack Overflow), in which case
our tool will not find the true origin, but rather find the first place
where it was committed into an open source repository.

The tool only looks at file-level copying. It will not detect snip-
pets of code that are included in a file. It will also not detect a copy
if a developer copies a file and modifies it before committing to the
new repository. See section 9, Future Work, for ideas about how
these issues could be addressed.

9 FUTUREWORK
In this study, we came across a couple of interesting questions
that we think would be worth studying. The jpeg compressor issue
was fixed and CVE entry created in a well funded Android project.
The fix was not quickly put into the less funded jpeg-compressor
project. Is there a difference in the number of vulnerabilities in
better funded projects vs less funded projects? Also, what is the
prevalence of commercially licensed code being copied into open
source projects?

While the current tool only looks for file-level duplication, the
tool could be expanded to also look for duplicated code fragments.
Finding the origin of code fragments would also be useful in ad-
dressing the challenges discussed in this paper. The current tool,
in order to scale to near the entirety of open source software, uses
hash matching. While we cannot escape hash matching to work at
this scale, it would be possible to match on multiple hashes: from
the original content (as described), from the tokenized content, from
content with removed comments, from computed ASTs, vulnerabil-
ity fixing diffs, etc. Matching the sets of tokens or ASTs would yield
many false positives, but more precise similarity measures can be
employed for the matched sets since the number of comparisons
would be tiny compared to the entire collection of open source soft-
ware. Similarly, locality-sensitive hashing (LSH) could be employed.
Additions to the underlying World of Code infrastructure would be
required to support these kinds of enhancements.

10 CONCLUSION
In this paper, we articulate the concept of universal version history
and argue for its usefulness in the context of the entirety of open
source software. We introduce a prototype tool, UVHistory, that
leverages the World of Code infrastructure to collect information
about the source code and other artifacts to help better understand
and manage widespread copying of source code. We demonstrate
the value of the universal version history concept by finding evi-
dence of negative affects of reuse, including reuse of outdated code
that contains known vulnerabilities or other bugs, is missing useful
features, or has different license restrictions. Our UVHistory tool
helps automate the production of the universal version history of
source code by tracing code among repositories and enables finding
the origins and version history for any source code file. We have
shown the potential of our approach by demonstrating a solution
in two different contexts which have practical relevance: license
compliance and security vulnerabilities.

11 DATA AVAILABILITY
To encourage independent verification or replication, we have
made the source code for our prototype tool and the data we
generated for the study available. These artifacts are available at
https://figshare.com/s/aac2c1a68f976f20b860. Replication requires
access to World of Code, which is freely available at worldof-
code.org.

REFERENCES
[1] S. Amreen, A. Karnauch, and A. Mockus. 2019. Developer Reputation Estimator

(DRE). In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1082–1085.

[2] Android. 2017. Android Security Bulletin—July 2017 . https://source.android.
com/security/bulletin/2017-07-01

[3] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2021. When
and How to Make Breaking Changes: Policies and Practices in 18 Open Source
Software Ecosystems. ACM Trans. Softw. Eng. Methodol. 30, 4, Article 42 (jul
2021), 56 pages. https://doi.org/10.1145/3447245

[4] Hudson Borges and Marco Tulio Valente. 2018. What’s in a github star? under-
standing repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[5] Hung-Fu Chang and Audris Mockus. 2006. Constructing Universal Version
History. In Proceedings of the 2006 International Workshop on Mining Software
Repositories (Shanghai, China) (MSR ’06). Association for Computing Machinery,
New York, NY, USA, 76–79. https://doi.org/10.1145/1137983.1138002

10

https://source.android.com/security/bulletin/2017-07-01
https://source.android.com/security/bulletin/2017-07-01
https://doi.org/10.1145/3447245
https://doi.org/10.1145/1137983.1138002

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Applying the Universal Version History Concept to Help De-Risk Copy-Based Code Reuse ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[6] Hung-Fu Chang and Audris Mockus. 2008. Evaluation of Source Code Copy
Detection Methods on Freebsd. In Proceedings of the 2008 International Work-
ing Conference on Mining Software Repositories (Leipzig, Germany) (MSR ’08).
Association for Computing Machinery, New York, NY, USA, 61–66. https:
//doi.org/10.1145/1370750.1370766

[7] Yang Chen, Andrew E. Santosa, Asankhaya Sharma, and David Lo. 2020. Au-
tomated Identification of Libraries from Vulnerability Data. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: Software
Engineering in Practice (Seoul, South Korea) (ICSE-SEIP ’20). Association for Com-
puting Machinery, New York, NY, USA, 90–99. https://doi.org/10.1145/3377813.
3381360

[8] Julius Davies. 2011. Measuring Subversions: Security and Legal Risk in Reused
Software Artifacts. In Proceedings of the 33rd International Conference on Software
Engineering (Waikiki, Honolulu, HI, USA) (ICSE ’11). Association for Computing
Machinery, New York, NY, USA, 1149–1151. https://doi.org/10.1145/1985793.
1986025

[9] Julius Davies, Daniel German, Michael Godfrey, and Abram Hindle. 2013. Soft-
ware Bertillonage. In Empirical Software Engineering. https://doi.org/10.1007/
s10664-012-9199-7

[10] Dependabot. 2021. Github Dependabot. https://github.com/dependabot
[11] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander

Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In 2014 IEEE International Conference on Software Maintenance
and Evolution. 391–400. https://doi.org/10.1109/ICSME.2014.61

[12] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander
Egyed. 2015. The ECCO Tool: Extraction and Composition for Clone-and-Own.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 2. 665–668. https://doi.org/10.1109/ICSE.2015.218

[13] Samuel W. Flint, Jigyasa Chauhan, and Robert Dyer. 2021. Escaping the Time
Pit: Pitfalls and Guidelines for Using Time-Based Git Data. In 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR).

[14] Daniel M. German, Massimiliano Di Penta, and Julius Davies. 2010. Under-
standing and Auditing the Licensing of Open Source Software Distributions.
In 2010 IEEE 18th International Conference on Program Comprehension. 84–93.
https://doi.org/10.1109/ICPC.2010.48

[15] M. Gharehyazie, B. Ray, and V. Filkov. 2017. Some from Here, Some from
There: Cross-Project Code Reuse in GitHub. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). 291–301.

[16] Github. 2021. About the dependency graph. https://docs.github.com/en/code-
security/supply-chain-security/understanding-your-software-supply-
chain/about-the-dependency-graph

[17] Michael W. Godfrey, Daniel M. German, Julius Davies, and Abram Hindle. 2011.
Determining the Provenance of Software Artifacts. In Proceedings of the 5th
International Workshop on Software Clones (Waikiki, Honolulu, HI, USA) (IWSC
’11). Association for Computing Machinery, New York, NY, USA, 65–66. https:
//doi.org/10.1145/1985404.1985418

[18] Google. 2021. Open Source Insights. https://deps.dev/
[19] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe. 2012. Where does this

code come from and where does it go? - Integrated code history tracker for open
source systems. In 2012 34th International Conference on Software Engineering
(ICSE). 331–341. https://doi.org/10.1109/ICSE.2012.6227181

[20] T. Ishio, Y. Sakaguchi, K. Ito, and K. Inoue. 2017. Source File Set Search for
Clone-and-Own Reuse Analysis. In 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). 257–268.

[21] Naohiro Kawamitsu, Takashi Ishio, Tetsuya Kanda, Raula Gaikovina Kula, Coen
De Roover, and Katsuro Inoue. 2014. Identifying Source Code Reuse across
Repositories Using LCS-Based Source Code Similarity. In 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis and Manipulation. 305–314.
https://doi.org/10.1109/SCAM.2014.17

[22] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical Software
Engineering 23, 1 (01 Feb 2018), 384–417. https://doi.org/10.1007/s10664-017-
9521-5

[23] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus. 2019. World of Code:
An Infrastructure for Mining the Universe of Open Source VCS Data. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
143–154.

[24] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam
Tutko, David Kennard, Russell Zaretzki, and Audris Mockus. 2021. World of
code: enabling a research workflow for mining and analyzing the universe
of open source VCS data. Empirical Software Engineering 26 (2021). https:
//doi.org/10.1007/s10664-020-09905-9

[25] A. Mockus. 2007. Large-Scale Code Reuse in Open Source Software. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007). 7–7.

[26] Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing. 2020. A
Complete Set of Related Git Repositories Identified via Community Detection
Approaches Based on Shared Commits. In Proceedings of the 17th International

Conference on Mining Software Repositories (Seoul, Republic of Korea) (MSR ’20).
Association for Computing Machinery, New York, NY, USA, 513–517. https:
//doi.org/10.1145/3379597.3387499

[27] MusicIP. 2007. musicip-libofa . https://code.google.com/archive/p/musicip-
libofa/

[28] National Institute of Standards and Technology. 2021. National Vulnerability
Database. http://nvd.nist.gov

[29] J. Ossher, H. Sajnani, and C. Lopes. 2011. File cloning in open source Java projects:
The good, the bad, and the ugly. In 2011 27th IEEE International Conference on
Software Maintenance (ICSM). 283–292.

[30] OWASP. 2022. OWASP Dependency-Check. https://owasp.org/www-project-
dependency-check/

[31] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2019. The Software
Heritage Graph Dataset: Public Software Development Under One Roof. In 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
138–142. https://doi.org/10.1109/MSR.2019.00030

[32] Francisca Pérez, Manuel Ballarín, Raúl Lapeña, and Carlos Cetina. 2018. Locating
Clone-and-Own Relationships in Model-Based Industrial Families of Software
Products to Encourage Reuse. IEEE Access 6 (2018), 56815–56827. https://doi.
org/10.1109/ACCESS.2018.2873509

[33] Shi Qiu, Daniel M. German, and Katsuro Inoue. 2021. Empirical Study on
Dependency-related License Violation in the JavaScript Package Ecosystem.
Journal of Information Processing 29 (2021), 296–304. https://doi.org/10.2197/
ipsjjip.29.296

[34] David Reid, Mahmoud Jahanshahi, and Audris Mockus. 2022. The Extent of
Orphan Vulnerabilities from Code Reuse in Open Source Software. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). https:
//doi.org/10.1145/3510003.3510216

[35] Richard Geldreich. 2020. richgel999/jpeg-compressor . https://github.com/
richgel999/jpeg-compressor

[36] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. 2020. Software
provenance tracking at the scale of public source code. In Empirical Software
Engineering. https://doi.org/10.1007/s10664-020-09828-5

[37] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. 76–85.

[38] Software Heritage. 2022. Software Heritage. https://www.softwareheritage.org
[39] Synopsys Technology. 2021. 2021 Open Source Security and Risk Analy-

sis. https://www.synopsys.com/software-integrity/resources/analyst-reports/
open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1

[40] The MITRE Corporation. 2017. CVE-2017-0700. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-0700

[41] The MITRE Corporation. 2021. Common Vulnerabilities and Exposures (CVE).
https://cve.mitre.org/

[42] The White House. 2021. Executive Order 14028 on Improving the Nation’s Cyber-
security. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/
05/12/executive-order-on-improving-the-nations-cybersecurity

[43] Thomas Wolter, Ann Barcomb, Dirk Riehle, and Nikolay Harutyunyan. 2022.
Open Source License Inconsistencies on GitHub. ACMTrans. Softw. Eng. Methodol.
(dec 2022). https://doi.org/10.1145/3571852

[44] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo Lee, and Sven Dietrich.
2021. V0Finder: Discovering the Correct Origin of Publicly Reported Software
Vulnerabilities. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 3041–3058. https://www.usenix.org/conference/usenixsecurity21/
presentation/woo

[45] World of Code. 2022. World of Code. https://worldofcode.org/
[46] Yuhao Wu, Yuki Manabe, Tetsuya Kanda, Daniel M. German, and Katsuro In-

oue. 2015. A Method to Detect License Inconsistencies in Large-Scale Open
Source Projects. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories. 324–333. https://doi.org/10.1109/MSR.2015.37

[47] Pei Xia, Makoto Matsushita, Norihiro Yoshida, and Katsuro Inoue. 2014. Studying
Reuse of Out-dated Third-party Code in Open Source Projects. Information and
Media Technologies 9, 2 (2014), 155–161. https://doi.org/10.11185/imt.9.155

[48] Théo Zimmermann. 2020. A First Look at an Emerging Model of Community
Organizations for the Long-TermMaintenance of Ecosystems’ Packages. Association
for Computing Machinery, New York, NY, USA, 711–718. https://doi.org/10.
1145/3387940.3392209

11

https://doi.org/10.1145/1370750.1370766
https://doi.org/10.1145/1370750.1370766
https://doi.org/10.1145/3377813.3381360
https://doi.org/10.1145/3377813.3381360
https://doi.org/10.1145/1985793.1986025
https://doi.org/10.1145/1985793.1986025
https://doi.org/10.1007/s10664-012-9199-7
https://doi.org/10.1007/s10664-012-9199-7
https://github.com/dependabot
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1109/ICPC.2010.48
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://doi.org/10.1145/1985404.1985418
https://doi.org/10.1145/1985404.1985418
https://deps.dev/
https://doi.org/10.1109/ICSE.2012.6227181
https://doi.org/10.1109/SCAM.2014.17
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-020-09905-9
https://doi.org/10.1007/s10664-020-09905-9
https://doi.org/10.1145/3379597.3387499
https://doi.org/10.1145/3379597.3387499
https://code.google.com/archive/p/musicip-libofa/
https://code.google.com/archive/p/musicip-libofa/
http://nvd.nist.gov
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/ACCESS.2018.2873509
https://doi.org/10.1109/ACCESS.2018.2873509
https://doi.org/10.2197/ipsjjip.29.296
https://doi.org/10.2197/ipsjjip.29.296
https://doi.org/10.1145/3510003.3510216
https://doi.org/10.1145/3510003.3510216
https://github.com/richgel999/jpeg-compressor
https://github.com/richgel999/jpeg-compressor
https://doi.org/10.1007/s10664-020-09828-5
https://www.softwareheritage.org
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html?intcmp=sig-blog-ossra1
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0700
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0700
https://cve.mitre.org/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity
https://doi.org/10.1145/3571852
https://www.usenix.org/conference/usenixsecurity21/presentation/woo
https://www.usenix.org/conference/usenixsecurity21/presentation/woo
https://worldofcode.org/
https://doi.org/10.1109/MSR.2015.37
https://doi.org/10.11185/imt.9.155
https://doi.org/10.1145/3387940.3392209
https://doi.org/10.1145/3387940.3392209

	Abstract
	1 Introduction
	2 Application Scenarios
	2.1 Security Vulnerabilities
	2.2 License Compliance
	2.3 Additional Scenarios

	3 Universal Version History Concept
	4 The UVHistory Tool
	4.1 Infrastructure: World of Code
	4.2 UVHistory
	4.3 Algorithm
	4.4 Output

	5 Research Questions
	6 Evaluation
	6.1 RQ1: Can the declared license be trusted?
	6.2 RQ2: Can UVHistory help with license compliance issues?
	6.3 RQ3: Can UVHistory help identify projects with security vulnerabilities?
	6.4 RQ4: Is the UVHistory prototype feasible?
	6.5 Evaluation of Existing Tools

	7 Related Work
	7.1 Universal History
	7.2 Large Scale Software Archives
	7.3 Tracking Code Changes
	7.4 Finding File Origin
	7.5 Security Issues
	7.6 License Compliance Issues

	8 Limitations
	9 Future Work
	10 Conclusion
	11 Data Availability
	References

