
Towards Understanding of Software Changes

Audris Mockus

audris@avaya.com

Avaya Labs Research

Basking Ridge, NJ 07920

http://mockus.org/

Goals

✦ To understand software evolution

✧ by understanding changes

✦ Universe is built from atoms

✧ and software is built from changes

✦ To get the principles of software evolution

✧ by finding fundamental properties of changes

2 A. Mockus Towards Understanding of Software Changes

Why study changes

✦ Reflect relationships between

✧ requirements and design

✧ technology and implementation

✧ personel (organization)

✧ time (evolution of the system)

✦ Practical

✧ changes are tracked to enable multiple people to work on them

✧ always documented by version control systems

✧ results have wide applicability

3 A. Mockus Towards Understanding of Software Changes

Model of a Version Control System

✦ Change record

✧ Textual description, often including bug numbers

✧ Date, Time, and, often, the size of change

✧ Change (file before and after change)

✦ Hierarchies:

✧ File/Module

✧ Developer/Organization

✧ Feature/Project

4 A. Mockus Towards Understanding of Software Changes

Goal: Version Control Census

✦ Gather all public VCS

✦ Create Universal Version History

✦ Determine

✧ global extent of code reuse

✧ authorship (succession)

✧ study innovation, defect propagation, compare propertiesof widely

reused code and non-reused code

5 A. Mockus Towards Understanding of Software Changes

Steps for Version Control Census

✦ Discover VCS repositories

✦ Copy/clone repositories

✦ Extract and index all versions of each file

6 A. Mockus Towards Understanding of Software Changes

Discover VCS repositories

✦ Forges, e.g., SourceForge, GoogleCode, Savannah

✦ Miniforges, e.g., FreeBSD, NetBSD, OpenBSD, OpenSolaris,
Gnome, KDE, Eclipse, RubyForge, OpenSolaris, NetBeans,
OpenJDK, and Mozilla, common-lisp.net, cvs.kaffe.org,
cvs.xemacs.org, freedesktop.org, and sourceware

✦ Large/well-known, e.g., Mysql, Perl, Wine, Postgres, and GCC

✦ Most widely used — use distributions Gentoo, Debian,
Slackware, OpenSuse, and RedHat

✦ 3G VCS: repo.or.cz, github.com, gitorious.org, git.debian.org

✦ Published surveys of projects

✦ Directories: RawMeat and FSF

✦ Verify: search for common filenams on Google Code Search to
see if new files are discovered7 A. Mockus Towards Understanding of Software Changes

How to automate VCS discovery?

✦ CVS, Subversion, Git, Mercurial, and Bazaar all have a specific

pattern for the URLs pointing to a project repository

✧ cvs:, svn:, git: or cvs., svn., git., hg., bzr.

✦ Creatie a spider utilizing a search engine, and seeded by project

directories (RawMeat, FSF) could grab these URLs from

projects’ home page

8 A. Mockus Towards Understanding of Software Changes

Copy/clone

✦ if copy/clone is possible

✧ rsync CVS repositories, e.g,

✧ rsync -avu rsync://cvs.savannah.gnu.org/sources/”$PRJ”.

✧ Mirror subversion:

✧ svnadmin create $SVMREPOS; svm init $PRJ

✧ svm sync $PRJ svn://svn.forge.objectweb.org/svnroot/$PRJ

✧ Clone others

✧ git clone git://perl5.git.perl.org/perl.git perl

✧ hg clone ssh://anon@hg.opensolaris.org/hg/fuse/fusefs

✧ bzr branch lp:mysql-server

✦ If copy/clone not possible, extract over internet

9 A. Mockus Towards Understanding of Software Changes

Extract/Index: list revisions

✦ List revisions

✧ CVS: find $PRJ -name ’*,v’| rlog ”$REPLY” | perl extr.perl

✧ SVN:

✧ svn log -v−−non-interactive

svn://svn.forge.objectweb.org/svnroot/”$PRJ”| perl extrsvn.perl

✧ GIT:

✧ git log−−numstat -M -C−−diff-filter=ACMR −−full-history

−−pretty=tformat:”STARTOFTHECOMMIT%n%H;%T;%P;%an;%ae;%a

| perl extrgit.perl

✧ Mercurial: hg log -v $PRJ — perl extrhg.perl

✧ Bazaar: bzr log -v−−long $PRJ — perl extrbzr.perl

10 A. Mockus Towards Understanding of Software Changes

Extract/Index: get content

✦ For each revision (obtained above) extract content:

✧ CVS: rcs -p$REV $FILE

✧ SVN: svn cat -r$REV $URL/$FILE$REV

✧ GIT: git show $REV:$FILE

✧ Mercurial: hg cat -r$REV $FILE

✧ Bazaar: bzr cat -r$REV $FILE

11 A. Mockus Towards Understanding of Software Changes

Extract/Index: store/index content

✦ Compress: $ccon = compress $con

✦ Insert into a hashtable (DBFile): $clones{$ccon} = $idx

✧ where $idx is a new integer if content is not in the table

✧ $clones{$ccon} if such content already exists

✦ print log: $idx;size;$FILE/$VERSION

12 A. Mockus Towards Understanding of Software Changes

Whats there

13 A. Mockus Towards Understanding of Software Changes

Forge Type VCSs Files File/Versions Disk Space

git.kernel.org Git 595 12,974,502 97,585,997 205GB

SourceForge CVS 121,389 26,095,113 81,239,047 820GB

netbeans Mercurial 57 185,039 23,847,028 69GB

github.com Git 29,015 5,694,237 18,986,007 154GB

repo.or.cz Git 1,867 2519529 11,068,696 43GB

Kde Subversion 1 2,645,452 10,162,006 50GB

code.google Subversion 33,292a 4,936,428 8,787,662 remote

gitorious.org Git 1,098 1,229,185 4,896,943 20GB

Gcc Subversion 1 3,758,856 4,803,695 14GB

Debian Git 1662 1,058,120 4,741,273 19GB

gnome.org Subversion 566 1,284,074 3,981,198 1GB

Savannah CVS 2,946 852,462 3,623,674 25GB

forge.objectweb.org Subversion 93 1,778,598 2,287,258 17GB

Eclipse CVS 9 729,383 2,127,009 11GB

SourceWare CVS 65 213,676 1,459,220 10GB

OpenSolaris Mercurial 98 77,469 1,108,338 9.7GB

rubyforge.org Subversion 3,825 456,067 807,421 4.9GB

Freedesktop CVS 75 139,225 784,021 4GB

OpenJDK Mercurial 392 32,273 747,861 15GB

Mysql-Server Bazaar 1 10,786 523,383 6GB

FreeBSD CVS 1 196,988 360,876 2.5GB

ruby-lang Subversion 1 163,602 271,032 0.6GB

Mozilla Mercurial 14 58,110 210,748 1.6GB

PostgreSQL CVS 1 6,967 108,905 0.5GB

Perl Git 1 11,539 103,157 0.2GB

Python Subversion 1 8,601 89,846 0.8GB

14 A. Mockus Towards Understanding of Software Changes

Questions about changes

✦ Basic descriptive

✧ What are the types of changes?

✧ What are the best change profiles over/for time, file, developer,

project?

✦ Comparison

✧ comparing two or more projects

✧ Prediction

✧ what type/how many/where/when/who?

15 A. Mockus Towards Understanding of Software Changes

Example: Why code is changed?

✦ Primary reasons for maintenance activities

✧ corrective: fix faults

✧ adaptive: add features

✦ How those reasons relate to:

✧ interval, effort, quality developer, size location, time

16 A. Mockus Towards Understanding of Software Changes

Why code is changed?

✦ How to obtain the purpose?

✧ Look for bug/new field

✧ may not be there, unreliable, only two values

✧ Ask developers

✧ too much overhead - small coverage

✧ Read change abstracts

✧ great idea - but 2M abstracts

✧ Let computer read abstracts

✧ but how?

17 A. Mockus Towards Understanding of Software Changes

An algorithm

✦ Use change description line

✦ extract frequent keywords

✦ classify keywords (fix, new, add, etc.)

✦ discover new types

✧ perfective - code cleanup

✧ inspection - code inspection suggestions

✦ verify on sample abstracts

✧ keyword -¿ purpose of the change

✧ iterate

18 A. Mockus Towards Understanding of Software Changes

Example keywords

19 A. Mockus Towards Understanding of Software Changes

Proportions

✦ add new functionality - 45%

✦ fix faults (bug) - 34%

✦ cleanup/restructure - 4%

✦ code inspection - 5%

✦ unclassified - 12%

20 A. Mockus Towards Understanding of Software Changes

Application: Software Dashboards

✦ A set of web pages or ”dashboards” is created to summarize the

current state development in AVAYA in order to support decision

making based on quantitative information

✧ Make comparisons to what happened the past

✧ To anticipate future needs

✧ Estimate project completion dates

✧ Estimate the amount of resources needed

✧ Summarize aspects of quality and productivity in individual projects

21 A. Mockus Towards Understanding of Software Changes

Example: predicting quality

22 A. Mockus Towards Understanding of Software Changes

Tools for Software Mining

✦ Absent experimental tools - build your own

✧ SoftChange: http://sourcefourge.net/projects/sourcechange

✦ Related tools

✧ R - high-end/extensible data analysis/statistics (google:R language)

✧ SW data cleaning, text analysis, CM/VC interfaces

✧ Cleaning: regular expressions (Perl, Tcl, sed)

✧ Tabulation: hashtables, arrays, sorting (Perl, Shell)

✧ Text analysis: word stemming, word semantics (google:

WordNet), sentence semantics ???

23 A. Mockus Towards Understanding of Software Changes

Systems used in a typical organization

✦ Sales/Marketing: customer information, customer rating,

customer purchase patters, customer needs: features and quality

✦ Accounting: Customer/system/software billing information and

maintenance support level

✦ Maintenance support: Currently installed system, supportlevel

✦ Field support: dispatching repair people, replacement parts

✦ Call center support: customer call/problem tracking

✦ Development field support: software related customer problem

tracking, installed patch tracking

✦ Development: feature and development, testing, and field defect

tracking, software change and software build tracking

24 A. Mockus Towards Understanding of Software Changes

How to foster experimentation in industry

✦ Volunteer help to projects in trouble

✦ Help with the top problem the project is faced, but collect

information for the the future problems (the empirical work)

✦ Provide value for all parties involved (services vs development vs

product vs CIO)

✦ Be sensitive about the privacy at individual and team level.

✦ Show something significant and unexpected about the project

early on

– Demonstrate immediate results

– Gain credibility

✦ Get commitments for other studies

25 A. Mockus Towards Understanding of Software Changes

Methodology: Extraction

✦ Get access to the systems

✦ Extract raw data

✧ change table, developer table. (SCCS: prs, ClearCase: cleartool -lsh,

CVS:cvs log), write/modify drivers for other CM/VCS/Directory

systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Do basic cleaning

✧ Eliminate administrative, automatic, post-preprocessorchanges

✧ Assess the quality of the available attributes (type, dates, logins)

✧ Eliminate un- or auto-populated attributes

✧ Eliminate remaining system generated artifacts

26 A. Mockus Towards Understanding of Software Changes

Methodology: Validation
✦ Interview a sample of developers, testers, project manager, tech.

support

✧ Go over recent change(s) the person was involved with

✧ to illustrate the actual process (what is the nature of the work item,

why you got it, who reviewed it)

✧ to understand/validate the meaning various attribute values: (when

was the work done, for what purpose, by whom)

✧ to gather additional data: effort spent, information exchange with

other project participants

✧ to add experimental/task specific questions

✦ Augment MR properties via relevant models: purpose [8],
effort [1], risk [9]

✦ Validate and clean recorded and modeled data

✦ Iterate
27 A. Mockus Towards Understanding of Software Changes

Methodology: Why Use Project Repositories?
✧ The data collection is non-intrusive (using only existing data minimizes

overhead)

✧ Long history of past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations.

✧ The information is fine grained: at MR/delta level

✧ The information is complete: everything under version control is

recorded

✧ The data are uniform over time

✧ Even small projects generate large volumes of changes: small effects are

detectable.

✧ The version control system is used as a standard part of a project, so the

development project is unaffected by observer
28 A. Mockus Towards Understanding of Software Changes

Methodology: Pitfalls of Using Project
Repositories

✦ Different process: how work is broken down into work items may

vary across projects

✦ Different tools: CVS, ClearCase, SCCS, ...

✦ Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

✦ The main challenge: create change based models of key problems

in software engineering

29 A. Mockus Towards Understanding of Software Changes

Methodology: Existing Models

✦ Predicting the quality of a patch [9]

✦ Work coordination:

✧ What parts of the code can be independently maintained [10]

✧ Who are the experts to contact about any section of the code [7]

✧ How to measure organizational dependencies [3]

✦ Effort: estimate MR effort and benchmark process

✧ What makes some changes hard [4]

✧ What processes/tools work [1, 2]

✧ What are OSS/Commercial process differences [6]

✦ Project models

✧ Release schedule [11]

✧ Release readiness criteria [5]

✧ Consumer perceived quality
30 A. Mockus Towards Understanding of Software Changes

References
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the

impact of software tools: A case study of the version editor.IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[2] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost.
Bell Labs Technical Journal, 5(2):7–18, April–June 2000.

[3] James Herbsleb and Audris Mockus. Formulation and preliminary test of an empirical theory
of coordination in software engineering. In2003 International Conference on Foundations of
Software Engineering, Helsinki, Finland, October 2003. ACM Press.

[4] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, andRebecca E. Grinter. An
empirical study of global software development: Distance and speed. In23nd International
Conference on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

[5] Audris Mockus. Analogy based prediction of work item flowin software projects: a case
study. In2003 International Symposium on Empirical Software Engineering, pages 110–119,
Rome, Italy, October 2003. ACM Press.

[6] Audris Mockus, Roy T. Fielding, and James Herbsleb. Two case studies of open source
software development: Apache and mozilla.ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[7] Audris Mockus and James Herbsleb. Expertise browser: A quantitative approach to

identifying expertise. In2002 International Conference on Software Engineering, pages
503–512, Orlando, Florida, May 19-25 2002. ACM Press.

[8] Audris Mockus and Lawrence G. Votta. Identifying reasons for software change using historic
databases. InInternational Conference on Software Maintenance, pages 120–130, San Jose,
California, October 11-14 2000.

[9] Audris Mockus and David M. Weiss. Predicting risk of software changes.Bell Labs Technical
Journal, 5(2):169–180, April–June 2000.

[10] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach.
IEEE Software, 18(2):30–37, March 2001.

[11] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in
software projects. In2003 International Conference on Software Engineering, pages 274–284,
Portland, Oregon, May 3-10 2003. ACM Press.

