
Forking and coordination in multi-platform development: a
case study

Anh Nguyen Duc1,2, Audris Mockus2, Randy Hackbarth2, John Palframan2

1Norwegian University of Science and Technology, Sem Saelands vei 7-9, Trondheim, Norway
2Avaya Labs Research, 211 Mt Airy Rd, Basking Ridge, NJ, USA

anhn@idi.ntnu.no,{audris,randyh,palframan}@avaya.com

ABSTRACT
With the proliferation of desktop and mobile platforms the
development and maintenance of identical or similar ap-
plications on multiple platforms is urgently needed. We
study a software product deployed to more than 25 soft-
ware/hardware combinations over 10 years to understand
multi-platform development practices. We use semi struc-
tured interviews, project wikis, VCSs and issue tracking sys-
tems to understand and quantify these practices. We find
the projects using MR cloning, MR review meeting, cross
platform coordinator’s role as three primary means of co-
ordination. We find that forking code temporarily relieves
the coordination needs and is driven by divergent sched-
ule, market needs, and organizational policy. Based on our
qualitative findings we propose quantitative measures of co-
ordination, redundant work, and parallel development. A
model of coordination intensity suggests that it is related to
the amount of paralel and redundant work. We hope that
this work will provide a basis for quantitative understanding
of issues faced in multi-platform software development.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms
Management, Measurement, Human Factors

Keywords
Multiple platform development, fork, coordination, empiri-
cal study

1. INTRODUCTION
A rapid growth in the popularity of cross-platform soft-

ware systems has been brought on by the recent proliferation
of mobile applications. Software such as web browsers, in-
stant messaging clients, voice communication, e.g., Skype
and other mobile applications, needs to be delivered for an
ever increasing range of hardware and software platforms.
Skype, with 299 million users, is available on Windows,
Linux, Mac, iOS, Window phone, Android, Kindle, TV and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM ’14 Torino, Italy
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Xbox [26]. The market for cross-platform mobile develop-
ment tools is forecast to reach US$8.2 billion by 2016 [2].

The existing literature on multi-platform development is
highly pragmatic, with guidelines and technical solutions [10,
1, 27, 21], but with few empirical studies of software devel-
opment practices and coordination needs that would sup-
port multi-platform development. The traditional software
engineering approaches may not directly apply in a multi-
platform application context that has many unique chal-
lenges. On one hand, development teams have to conform
to different requirements and constraints for each platform
(e.g., iOS, Android, Windows 7, etc.), hardware (e.g., HTC,
Google, Samsung), and, potentially, communication proto-
col (e.g. AIM, XMPP, SIP, H323). On the other hand, devel-
opers need to maintain inter-operability, consistent perfor-
mance and, potentially, look-and-feel of the product across
different platforms [8].

The maintenance and upgrades, which account for two-
thirds of a typical software project’s lifetime cost [22], might
take even more effort in a cross-platform system develop-
ment. Not many developers are intimately familiar with
several platforms, thus it is often necessary to have different
individuals and teams implement the same product for each
platform. As a result, it may be difficult to propagate bug
fixes across multiple version of a software application. For
example, a recent critical security flaw was fixed for iOS, but
remained unpatched for Mac OS [9]. Some code, often the
user interface, has to be implemented in a platform-specific
framework and ensured that the application features work in
a similar fashion. This requires the teams implementing on
different platforms to be able to effectively coordinate their
work.

To understand how software intensive organizations re-
solve development and coordination problems in multi plat-
form development we set out to study a set of voice, video,
and instant messaging clients at Avaya. The qualitative part
of the study investigates the state-of-the-practice in multi
platform development and associated coordination mecha-
nisms. In the quantitative part we constructed a network of
related file versions across 43 instances of version control sys-
tems used by 25 different software and hardware platforms
and use it to quantify the extent of forking and coordination.
Our primary contributions involve:

1. A description of industrial multi-platform development
effort: the practices and challenges; coordination mech-
anisms; and reasons for codebase forks.

2. Measures of the extent of parallel development, co-

Table 1: Summary of the Projects
Items Values

Number of platforms 25
Number of codebases 43

Number of files 232065
Number of branches 571
Number of commits 4055968

The timeframe 2010 - 2013

ordination, and redundant work in multiple platform
development

3. A model of relationship between the intensity of coor-
dination and the amount of parallel development and
redundant work.

The paper is organized as follows: Section 2 introduces re-
lated terminologies used in this paper. Section 3 presents
research approaches and study context. Section 4 presents
findings from qualitative phase. Section 5 describes mea-
sures of forking and coordination, Section 6 presents quan-
titative findings. Section 7 reviews related work, Section 7.3
points out limitations, and Section 8 presents the conclu-
sions.

2. TERMINOLOGY
We start from the terminology used in this paper. Multi-

platform software refers to the ability of software to op-
erate on more than one platform with identical (or similar)
functionality [5]. Platform can refer to (1) different types of
operating systems (e.g., Windows, FreeBSD, Linux, Mac OS
X, and Solaris systems), (2) types of processors (e.g., x86,
PowerPC, SPARC or Alpha), (3) communication protocol
(e.g. SIP, RTM, AIM and H323) and (4) types of hard-
ware systems (e.g., iphone, ipad, android phone and win-
dows phone). Project has a its own code repositories with
active code commits and MRs and results in one or more
releases of a client product. In this study, project, platform
and fork are used as inter-changeable terms. Fork is a clone
of an entire VCS repository that has subsequent develop-
ment independent of the original project [19]1. Modifica-
tion request (MR) is a piece of work (a story, an epic, a
task or a bug) that is tracked in issue tracking system, such
as JIRA. Commit is a set of changes to one or more file
traced by Version Control Systems (VCSs). Commits to the
VCS are associated with a MR identifier in the considered
projects. Software dependencies refer to the relationship
between software artifacts, such as source files, components
and modules. There are many type of dependencies, such
as data-related dependencies (i.e. a data structure modified
by a function and used in another function) [11, 3] or func-
tional dependencies (e.g. method A call method B) [11] and
logical dependencies (e.g. files being changed together) [7].
Related files are files that had identical content in the
past (based on their version history) [16]. MR-clone is an
MR which was created for another project and is associated
with an MR in the original projects. MR clones are used as

1Forking is also used as a way to contribute to the project
where the contributor creates a mirror (fork) of the repos-
itory and then sends pull requests to update the central
repository. Such practice is not used in Avaya.

Figure 1: Research phases

a coordination mechanisms to track tasks among different
projects. Coordination mechanisms are approaches to
manage dependencies among software artifacts and project
stakeholders, and is an important research topic [14].

3. RESEARCH METHOD
We describe the context of the study in Section 3.1 and

design in Section 3.2.

3.1 Context
Avaya is developing large, complex, real-time software sys-

tems that are embedded and standalone products. Develop-
ment and testing are spread through 10 to 13 time zones
in the North America, USA, Europe and Asia. R&D de-
partment employed many virtual collaboration tools such
as JIRA, Git, WIKIs and Crucible. Development teams use
Scrum-like development methodologies with a typical 4-week
sprint. Several mechanistic coordination approaches have
been used, such as (1) daily scrum meeting, (2) sprint plan-
ning meeting, (3) sprint review, (4) backlog review meeting,
and (5) Scrum of scrums meeting [23].

We focused on a 10+ year old software component, the
so-called Spark engine. As a software platform, Spark pro-
vides a consistent set of signaling platform functionalities to
a variety of Avaya telephone product applications, includ-
ing those of third parties. The current evolution of Spark
is a client platform that provides signaling manager, ses-
sion manager, media manager, audio manager and video
manager. Spark engine started in 2005 and has forked into
many different codebases to support different combinations
of hardware (Flare, ipad, iphone, Mac, Samsung devices,
1XC, VDI, ACA, AAC, IPO and LYNC), software (iOS, an-
droid, windows) and communication protocol (SIP, H323,
etc), as shown in Table 1.

3.2 Research design
We conducted a single case study in a large telecommu-

nication organization, following a guideline suggested by
Yin [28]. The case represents a typical multi-platform soft-
ware development with involvement of teams across geo-
graphical and organizational boundary. Exploratory case
studies are used to investigate little known phenomenon or
one without an established theoretical basis [20]. We use
this approach to discover the code divergence, forking activ-
ities and coordination mechanisms in multi-platform soft-
ware systems.

Table 2: Interviewees
ID Positions Locations Projects
P1 Scrum Mastser Tel Aviv Isarel PrA, PrB
P2 Developer Tel Aviv Isarel PrA, PrB
P3 Developer Ottawa Cananda PrC

P4
Development
manager

Ottawa Cananda PrD, PrE

P5 Developer New Jersey, USA PrF

P6
Development
manager

Ottawa Cananda PrK, PrB

P7 Scrum Master Ottawa Cananda PrI, PrJ
P8 Product owner Ottawa Cananda PrG
P9 Developer Ottawa Cananda PrF

P10 Development
lead

New Jersey, USA
PrH, PRK,
PrA, PrB

The research consists of two phases and was conducted
between December 2012 and March 2014. In Phase 1, we
aimed to understand the context of multi-platform develop-
ment, including technical and management challenges, and
current development and coordination practices. A range
of data collection methods were used to achieve familiarity
with the organizational context and participants, including
conversations and interviews, and review of relevant docu-
mentation and project artifacts. Semi structured interviews
is the primary data source in this phase. We conducted
10 semi-structured interviews with different project roles,
such as product manager, technical leader, developer and
researcher, as shown in Table 2. The interview guide con-
sists of four main parts:

1. Challenges of working on inter-platform teams,

2. State-of-the-art of codebase divergence,

3. Coordination mechanisms, and

4. Codebase merging activities

The interview guide was designed using the checklist from
the literature review and revised multiple times by the au-
thors. Each interview lasted from 30 to 60 minutes, de-
pending on time availability of interviewee. The interviews
were flexibly conducted to allow for improvisation and explo-
ration of emerging issues [20]. The interviews were recorded,
transcribed and reviewed by interview participants. Table 2
describes the list of interviewees in this study.

Relevant segments of text that expressed either challenges
and practices in multiple development platforms were la-
beled with an appropriate code by open coding. After that,
we grouped the relevant codes as a higher-order code us-
ing axial coding [28]. Finally, we performed selective coding
in secondary data materials, such as project wiki and MR
descriptions.

In Phase 2, we aimed at quantifying important concepts
found during Phase 1, as shown in Figure 1. In particular, we
quantified the extent of forking activities, amount of coordi-
nation via cloning MRs and the extent of potentially redun-
dant development. The primary data sources in this phase
were Version control systems (Git and SVN) and Issue track-
ing system (JIRA). We started from data integrated over all
Avaya projects as described in previous studies [15, 16]. The
data unifies information from most of version control and is-
sue tracking systems in Avaya, but we still need to select
the projects related to the client’s communication. Three
authors of the papers had insights on the products, which

helped to identify 67 relevant codebases. We interviewed key
stakeholders to confirm and complement the codebase list.
To select and link relevant data, we wrote shell, Perl, and R
programs to extract and calculate the necessary measures.

After all data was extracted, we performed data cleaning
to remove inactive repositories (repositories without changes
in the last 12 months) and moved repositories (reposito-
ries moved from one VCS to another VCS without subse-
quent development activities in the original VCS). 20 in-
active repositories and 4 moved repositories were removed.
Table 1 provides a summary of the final dataset of 43 project
repositories for the 25 platforms.

Based on findings in Phase 1, we proposed and described
several measures of parallel development and coordination.
We performed logistic regression analysis to investigate the
relationships among some of the concepts.

4. QUALITATIVE FINDINGS
In this section we summarize our qualitative findings or-

ganized into three themes as shown in Figure 2.

• Reasons for diverged code bases (Section 4.1),

• Challenges managing diverged code bases (Section 4.2),
and

• Coordination mechanisms deployed to manage diverged
code bases (Section 4.3).

4.1 Reasons for forking a codebase
Avaya projects related to Spark recognize the benefits of

preserving a common code base across platforms - i.e. not
forking the code repository. Benefits include efficiency in de-
velopment and maintenance because changes are only made
once, and improved quality because validation and verifica-
tion activities can focus on one version of the change instead
of being distributed across many versions. Nevertheless, we
identified four reasons that Spark related projects created
forks leading to diverged code:

• Schedule constraints (Section 4.1.1)

• Technical variation in the platform (Section 4.1.2),

• Coordination overhead in maintaining a single plat-
form (Section 4.1.3), and

• Organizational differences (Section 4.1.4)

4.1.1 Schedule-driven forks
We found that a common reason for code divergence is dif-

ferent project release schedules. In particular, one project
may require a stable code base with minimal, tightly con-
trolled changes while another project may be in active de-
velopment with rapid code changes. For example, Project
A shared some common features with Project B, and origi-
nally they were in the same codebase. However, Project A
team created a separate code to assure a stable code base:
“the next delivery date of PrA is [Date X] while the coming
software delivery date of PrB is later at [Date Y]. There-
fore, while PrB is still in development phases with testing
and debugging, PrA needs to be stable for delivery”. (P1).

Projects with the same release schedule, but different de-
velopment schedules have also chosen to diverge their code
base. For example, we observed that code divergence oc-
curred among projects with different numbers of sprints or
with different sprint durations.

4.1.2 Feature-variety-driven forks
We have observed code divergence when one project in-

troduces significant new features compared to the project(s)
using the shared code base. For example, two projects PrE
and PrF implemented a set of signaling engine functionali-
ties in iOS and other mobile platforms accordingly. Early in
its project stage, PrF stopped sharing the signaling engine
engine codebase: “after the first six months, the signaling
engine stopped synchronization with project PrE. From that
time, it was branched off from PrE and developed indepen-
dently, due to technical differences. The current situation is
that it has features that other iOS clients do not use” (P5)

Another typical example of forking due to feature variety
is project PrG and project PrD implementing client in Win-
dows and iOS platforms. In the begining, there was a close
collaboration between the two teams as user interface code
was shared for the first two releases: “. . . the reason is that
the UI team is the same for both Windows and iOS versions.
The design and logic behind them is pretty similar. . . ” (P8).
The code base for subsequent releases diverged, however,
because of project differences in user interface requirements.
Developers in PrG stated that this issue made it difficult to
collaborate among teams.

The assesment of feature variety becomes a part of the
forking decision-making process in PrA: “. . . The decision
is usually made by trying to understand what are the main
changes coming in from other releases. For example, if we
are working for a H323 release and we know that a release
from another project introduces a major feature then proba-
bly we want to branch out before that. This is a purely risk
management activity.” (P9)

4.1.3 Coordination overload
When two projects share the same code base, cross-project

coordination is required to manage the impact of changes
to the code base on each project. We have observed that
projects have chosen to fork their code base when too much
coordination is required. P6 stated: “. . . in general, there
is no good reason to have separate platforms of the same
hardware. Historically there were separate teams working on
codebase PrF. Later in the project, they had been communi-
cating too much and (hence) the codebases got separated”.
Here is another example: “... the reason for stopping syn-
chronization (between PrC and PrD) is too much overhead,
no dedicated people to maintain the [shared] source code”
(P8) Note that according to our definition, we would refer
to feature forks as branches.

4.1.4 Forking due to organizational differences
We have observed code divergence between two projects

with common features and common schedule because the
projects are in different organizations. The reason is that
management needs (or wants) total control of resources if
they are responsible for product delivery in their organiza-
tion: “. . . it (coordination efforts) has been mostly on ipad
and windows team, purely because they came from the same
team right, because we were working very closely together on
the same area . . . after that, we have been divided into differ-
ent teams, as the managers were divided into the pure desk-
top and windows team and the purely mobile teams . . . the
organization split in the different ways from . . . ”

In Spark, codebases are forked for outsource development
teams. It is a common case that the outsourced team cre-

Figure 2: Thematic scheme map

ated its own version of the code base to establish code own-
ership of features and bug fixes: “. . . I find the best thing
working with external teams, especially from different time-
zone and locations is that if you have a really good clear
process, especially with feature forking model, it is very easy
for people to work together...they work on features and wrap
it up, deliver back to mainstream in the end of release . . . ”
(P7). Strictly speaking, we consider feature work to be an
instance of branching, not of forking. However, in this case
the outsourced team uses their own version control reposi-
tory and work on an entire sequence of releases, not on just
on individual features.

4.2 Challenges managing diverged codebases
We found four primary challenges in managing diverged

code bases.

• Technical debt is the extra development that arises
when code is implemented in the short run (e.g. to de-
liver a product release) in a manner that will require
additional maintenance and development in the long
run (e.g. to deliver subsequent releases or to share
code among similar products). Technical debt is often
necessary, but we found that a diverged codebase en-
couraged the growth of technical debt as described in
Section 4.2.1.

• A diverged code base encourages redundant develop-
ment of features as described in Section 4.2.2.

• In addition to redundant development a diverged code
base encourages redundant test effort as described in
Section 4.2.3.

• Developers and testers who work on a diverged code
base tend to become experts on their fork of the code
base, but not on the family of products from which the
code base originated as described in Section 4.2.4.

4.2.1 Growing technical debt
We found that the muti-platform development increases

the technical debt for the whole product family. P10 men-
tioned: “We migrate software from platform to platform, or
team to team, and this builds up technical debt. We need to
continuously invest in software — it is getting old even if
you don’t touch it”.

Spark diverged codebase has many individual product teams.
Because of overall staff constraints, each product team is
thinly staffed and yet is responsible for the entire product.
As a result, schedules are tight with little time to reduce
the MR backlog: “Chasing a deadline created technical debt.
Technical debt needs to be caught and dealt with earlier.”
(P8).

In several projects, multi-platform development comes with
rapidly increasing MR backlog, creating pressure on devel-
opers, which leads to “work around” MR resolutions. Here
is an example:“The project has an ever growing backlog. It
has grown to [figure] Severity level 1/2/3 issues for all the
releases. The development team is stretched thin. We are
focusing on getting [release] 6.2 out, so there is no bandwidth
to tackle the backlog. Many issues are open though internal
Interop, Product Verification (PV), or System Verification
(SV) testing. Many of these are duplicates. If it were not for
the urgency of shipping 6.2 the backlog would be addressed.
We have stability issues we do not know the cause of ”. (P5)

A short-term resolution for a bug or a feature request that
is applied to only a subset of platforms would need more
work later to be applied to the remaining platforms.

4.2.2 Redundant development effort
We found that product team staff responsible for one

Spark platform were often unaware of many of the changes
in other Spark platforms. As a result, features and bug fixes
are implemented independently for each platform resulting
in development that is unintentionally duplicated. Here is an
example: “”Some files included in the root are present multi-
ple times in different codebases. For example some files are
generated by multiple packages. This is redundant but also
makes it difficult to know for sure which version of the file
ends up on which phone release. ... it is important to make
sure that you identify the correct source for the file as found
on the latest phone release today and remove the other ones.
It is more difficult to check across different platforms.” (P3)

Occurence of multiple identical slightly dirveged files com-
plicates merging features across platforms. “Team PrA will
have to do much of the dual delivery. Many features de-
livered to PrA need a port to PrB too. But the Team PrB
will be involved in the code reviews. They will need to get
involved in case the merge does not go smoothly.” (P2)

In particular, the replication of code related to third par-
ties components are more critical and harder to solve. P1
talked about collaboration between PrA and PrB:“We found
a bug in PrB codebase around the Broadcom hardware. Broad-
com provided a fix ... and also introduced patches for that.
We were working with Broadcom on PrA and would prop-
agate the fix to PrB. ... We were not in the position to
take the patch in the current release of PrB. This happened
a couple of times and then we had different patches from
Broadcom on PrA and PrB. The main challenge in consol-
idating two branches was matching the Broadcom patches”.

To mitigate redundant development, some individual prod-
uct teams on different Spark platforms have made an effort

to track changes in the other team’s product as illustrated
in this example: “. . . Product team PrA team needs to watch
for every submission to Product team PrB. Product team
PrA assigned a developer dedicated to the product of PrB,
and have an established line of communication with them via
phone and conference call throughout the week . . . ” (P2).

4.2.3 Redundant testing effort
Diverged code bases induce redundant test effort because

each platform’s test team typically independently tests sim-
ilar features or functionalities from different platforms. Un-
less they know other teams’ test cases of similar features,
testers independently create their own test cases as shown
in this example: “the PrA team now only tests for PrA code
and PrB team only tests PrB code. If there is a cross de-
livery, both teams have to test other product as well. Hence,
both test teams get hit by the same amount.” (P2)

We found that duplicated testing effort is more critical in
high-level testing teams, such as at PV team and SV team.
At this level, testers did not have insight about releases and
how they are related across platforms. P8: “This is some-
thing outside of our hand. What we can do is to tell the
SV team that these products should be tested, there is a new
release with these patches, we need you to pick it up and run
with it. . . We do that by writing in the release note. . . . But
usually the SV team organizes themselves to secure resources
for program vs. testing these patches just like we do in de-
velopment.”

A particular and often very important case of redundant
testing is testing third party components. “when a bug in-
volves both [third party vendor] hardware and application
products, both sides need to be able to reproduce the bug to
find the main root-cause.” (P6)

4.2.4 Lack of knowledge of the whole system
With diverged code bases, each project has its own prior-

ity of features and bug fixes. As a result of continuous evolu-
tion, the whole product family becomes extremely complex.
Consider, for example, the likely complexity of the diverged
code base leads to few, if any, engineers who understand in
detail this entire code base.

In addition, individual development teams typically do
not have “who does what” and “who knows what” knowledge
about other teams as shown with this example: “Once you
move outside the core, you have different platforms, sched-
ules, and product managers, etc. In many cases working
with another project is like working with a different company.
There are different things to manage, so the orchestration of
it all becomes problematic.” (P5).

4.3 Coordination mechanisms across platforms
We observed three primary techniques for coordinating

development among platforms with diverged code. Many
projects deployed at least two of these approaches:

• Clone MRs across platforms (Section 4.3.1) where a
cloned MR is a replica of the original MR, contain-
ing the same information stored in the original issue
— e.g. Summary, Affects Versions, Components, etc.
The cloned MR is typically linked to the original MR.

• Establish a cross platform coordinator role (Section
4.3.2)

• Conduct cross-project MR review meetings (Section
4.3.3).

4.3.1 Cloning MR tickets across platforms
Formal defect tracking systems are used as a standard

practice in all Spark-related development teams. To coor-
dinate a common bug fix among projects, many projects
create a cloned MR as described by P7: “. . . when there is a
platform MR ticket linked to an application MR ticket that
requires resolution, the ticket in the application would be as-
signed to a developer who is responsible to track the changes.
He would do so through the relevant focal point in our team
to the platform team. Once the platform ticket is resolved,
the person assigned should verify this, add the info to the
ticket and sync up with the assigned build person on the re-
vision that needs to be committed. The assignee would update
the ticket with the changes done (move it to resolved with rel-
evant info and create clones if required).” (Wiki page PrH,
P7).

Cloned MRs have been used in many projects: “We take
a ticket from one platform branch, cloning them to another
platform branch and linking them to the application feature.
Basically it helps us to track back the issues.” (P2)

4.3.2 Cross-platform coordinators
Technical staff members who address cross-platform issues

are critical to maintaining knowledge flow among projects.
For example, a designated team consisting of developers
from different Spark projects, such as SIP, H323 and 1XC
coordinate issues of common concern, such as changes in
tools or process, buyback planning, and dependencies be-
tween projects. Other projects appointed a developer re-
sponsible for examining all components being developed for
some other platforms. As an example, an appointed devel-
oper made the following observation: “. . . there is a Spark
engine team member who looks on both sides, Windows and
iOS to check for a bug across platforms . . . ” (P8).

4.3.3 Cross-platform MR review meeting
The MR review meeting is an important standard prac-

tice in all Spark related projects as shown by this typical
example. “Every week the scrum team should meet for about
an hour to review the product backlog. This is the process of
estimating the existing backlog using effort/points, refining
the acceptance criteria for individual stories, and breaking
larger stories into smaller stories.” (Wiki page – Project
PrK).

Cross-project MR review meetings include project man-
agers, technical managers and lead developers from each
participating project. At each meeting, participants review
requests from each participating team, review and create
tickets, and make sure team members are aware of what is
coming to them. “. . . everytime there is an open code in-
spection everyone in the team can participate . . . we have a
mandatory of minimum inspection from two reviewers when
submiting our code” (P10)

Cross-project MR meetings help creating a culture of reg-
ular informal communication to clarify conflict issues, cloning
issues and other issues as described in this example: “Syn-
chronization is done by talking to the other team, such as the
platform team. In the development level we are discussing
everything, such as testing environment. For the Tel Aviv
site, every time they put a fix we need to test whether it in-

Figure 3: Illustration of proposed measures

troduces a bug to the application. Overall, there is a lot of
coordination that happens on a daily basic. . . ” (P4)

5. METRICS
Table 3 provides the definitions for the measures we used

to quantify the concepts found in Phase 1 of the study and
Figure 3 illustrates them. A change in a file, for instance,
F2 in Project 2, can be associated to a specific MR, for
example MR1. There is a cloning relationship among MRs,
for instance, between MR2 and MR3. In Figure 3, F2 has 3
commits and is cloned by file F6 in Project 1.

5.1 Amount of coordination via cloning MRs
To quantify the amount of cross-platform coordination via

cloned MRs we used the number of cloned MRs (NclonedMR).
As noted above, cloned MRs are an important bug-fix co-
ordination vehicle with other projects. In the example in
Figure 3, NclonedMR(Project 2) = 0 (none for F2) + 1
(MR2 for F3) + 0 (none for F4) = 1 The number of such
MRs represents the amount of coordination and the fraction
of MRs that is cloned for a project represents the intensity
of coordination. We model the intensity of coordination in
Section 6.2.

5.2 Extent of cross-platform development
We used two metrics to quantify the extent of cross plat-

form development: average number of forks per file (Avg-
ForkFile) and fraction of files being changed in parallel (Frac-
Para). AvgForkFile quantifies the extent of forking (that
indicates potential need for parallel development) for the
project code. In the example, AvgForkFile(Project 2) = (2
(Project 1 and Project 3 for F2) + 1 (Project 3 for F3) + 0
(for F4))/ 3 = 1.

FracPara quantifies the realized amount of parallel devel-
opment and measured by a ratio between the number of files
being changed in parallel and total number of file in Project
X.We use the ratio because projects with many files might
also have many files being changed in parallel.

5.3 Amount of redundant work
We used two measures to quantify the amount of redun-

dant work across platforms: the number of redundant com-
mits (NRCom) and the number of redundant MRs (NRMr).
NRCom is defined as a ratio of the redundant to total num-
bers of commits associated with all related files of a project.
A redundant commit is a commit that is repeated among re-
lated files. In the example, NRCom(Project 2) = 3 x (3-1)/
3 (3 commits of F2 being shared with 2 other related files)
+ 2 x (2-1)/ 2 (2 commits of F3 being shared with another

Table 3: Variable definitions
Varible Description Formula

Duration(X)
Duration between the first and
last file change in Project X maxf∈Xtf −minf∈Xtf (1)

Nfile(X) The number of files in Project
X | X | (2)

Nparalfile(X)
Number of files being changed
in parallel. df is the period of
time over which f is modified

| {f : ∀f ∈ X, ∃f ′ /∈ X ∧ df ∩ d′f 6= ∅} | (3)

NclonedMR(X)
Number of cloned MRs in
Project X. f is a file and mrf
modifies f

∑
f∈X

| {mrf : ∃mr : mr is a clone of mrf} | (4)

AvgForkFile(X)

Average number of forks re-
lated to a file in Project X.
Forkf is a set of forks for file
f

∑
f∈X | {Forkf} |
| X | (5)

FracPara(X)
Fraction of parallel develop-
ment in Project X

| {f : ∃f ′ /∈ X ∧ df ∩ d′f 6= ∅} |
| X | (6)

NRMR(X)
Number of redundant MRs in
Project X

∑
f∈X

| {∪f ′∈Ff
mrf ′} | ∗ | Ff | −1

| Ff |
, (7)

where Ff = {f ′ : f ′ /∈ X ∧ f ′related tof}

NrCom(X)
Number of redundant Commits
in Project X

∑
f∈X

| ∪f ′∈Ff
Commf ′ | ∗ | Ff | −1

| Ff |
(8)

related file) + 3 x (1-1)/1 (3 commits of F4 being shared
with 0 other file) = 3

For example, a bug-fix commit in one project may need
and an independent implementation in another project where
developers may not be aware of the original fix. Such an im-
plementation would be clearly redundant because, if aware
of the original fix, the second team could reuse it in their
project if the code has not diverged too much. Therefore,
NRCom may reflect the potential amount of redundant de-
velopment work .

NRMr is the number of redundant MRs modifying files
related to files of a project. A redundant MR is defined as
an MR that is repeated among related files. In the example,
NRMr(Project 2) = 1 x (3-1)/ 3 (1 MR of F2 being shared
with 2 other related files) + 1 x (2-1)/2 (1 MR of F3 being
shared with another related files) + 0 (0 MR for F4) = 1.167

Note that redundant MRs do not represent MR clone re-
lationships. Redundant MRs are defined as MRs changing
a related file. A high number of redundant MRs implies a
large number of related tasks that are implemented indepen-
dently in several projects.

5.4 Hypotheses about multiple platform coor-
dination

Using the above measures we pose the following hypothe-
ses regarding factors that may affect coordination measured
via MR cloning. In particular we expect more coordina-
tion measured via MR cloning with the following changes in
multi-platform development. We also expect that amount of
coordination will increase to solve redundant tasks. These
leads to three Hypotheses as below:

H1 The number of cloned MR is possitively associated
with the number of files changed in parallel.

H2 The number of cloned MR is possitively associated
with the number of redundant commits.

H3 The number of cloned MR is possitively associated
with the number of redundant MRs.

6. QUANTITATIVE FINDINGS
We first provide summaries of various measures and then

test our hypotheses.

6.1 Descriptive analysis
Table 5 describes some statistics of measures shown in Ta-

ble 3. Median active duration of a project is 1099 days and
maximum value of 1858 days. In average, each project has
2202 files. The smallest project has 81 files and the largest
project has 132050 files. This is because some projects
involve files from multiple code repositorires and serve as
mainline development. Some other more recent projects are
branched out to develop a feature or to integrate other func-
tionalities across platforms.

Number of cloned MR per project varies from 0 to 1017
MRs. Average number of related forks per file varies from
0 to 63 forks. 34 projects (79%) have code files spread over
more than 10 forks. There are three projects with 70 or
more forks, all of which are common engine components
that deliver code to many different applications across many
platforms. We found a weak correlation (Spearman corre-
lation coefficient = 0.286) between the number of files and

Table 4: Logistic regression model

Dependent variable:

Likelihood of cloning a MR

M1 M2

log(NredundantMR/Nfile) 0.055∗∗∗

(0.008)
log(NrComm/Nfile) 0.017∗∗

(0.007)
log(FracPara + 1) −0.204∗∗∗ −0.182∗∗∗

(0.014) (0.014)
Duration −0.0005∗∗∗ −0.001∗∗∗

(0.00003) (0.00003)
Constant −0.100∗∗∗ −0.091∗∗

(0.039) (0.040)

Observations 32008 32008
Log Likelihood −1,298.821 −1,318.752
Akaike Inf. Crit. 2,605.642 2,645.503

Note: ∗∗p<0.05; ∗∗∗p<0.01

the number of forks, suggesting that a large project is not
neccesary a project with many related forks.

Fraction of parallel development (FracPara) in a Spark
project ranges from 0% to 72%. Six projects had all related
files moved without subsequent parallel changes, implying
they did not buy back changes from other projects. The
median percent of project files changed is 4%. There are
two projects with more than 50% of their codebase being
changed in parallel. They are relative young projects (less
than a median project age) with less than 1000 files.

The number of redundant MRs and commits varies from
6.33 to 34708 (MRs) and 438 to 686792 (commits). This is
not unexpected given the large variation of the numbers of
forks per project. Altogether there were 280115 redundant
MRs across the 43 projects affecting 500783 files.

6.2 What are the probability that an MR would
be cloned?

In this section, the results of our logistic regression analy-
sis modeling the intensity of coordination are presented. The
response variable is the likelihood that an MR will have a
clone (MR clone-proneness). It implies the project’s propen-
sity to coordinate work via MRs and reflects the fraction of
work that is coordinated in this fashion.

To obtain the response variable, we assigned each MR af-
fecting a project a value of one if it was cloned and zero
otherwise. We used a log transformation for all predictors
shown in Table 4, except for Duration. This data processing
helps to reduce the impact of the highly skewed distribu-
tion of collected metrics. The 32008 MRs from 43 projects
represent our observations. Because of the high correlation
among predictors NRCom and NRMR (Spearman coefficient
value of 0.783), we investigated them in separate models M1
and M2.

The logistic regression results are presented in Table 4.
M1 uses Fraction of redundant MRs, Fraction of parallel de-
velopment (FracPara) and Duration as independent factors.
M2 uses Fraction of redundnat Commits, FracPara and Du-
ration as independent factors. Residual deviance is 2605 and
2645 for M1 and M2, correspondingly. Each model explains

Table 5: Descriptive statistics of variables
Variable Min 1/4Q Median 3/4Q Max
Duration 428 834 1099 1395 1858

Nfile 81 614 2202 5180 132050
NclonedMR 0 33 97 261 1017
AvgForkFile 0 0 1 3 63

FracPara 0 1 4 16 72
NRMR 6 668 1942 5692 34708

NRComm 438 3990 18243 91980 686792

for c.a 21% of variation. All independent variables in both
models are statistically significant at p < 0.01.

FracPara is the predictor that explain most variance. Neg-
ative coefficient of FracPara shows negative relationships
between fraction of files changed in parallel and MR-clone
proneness. The result differed from our initial expecta-
tion, hence, rejecting H1 (which proposed that an increased
number of files changed in parallel increases coordination).
This implies that the extent of parallel development de-
creases the probability of having a cloned MR. Perhaps,
forking and more parallel development between independent
projects leads to less coordination needs via cloned MRs.

Positive coefficients of NRCom/Nfile and NRMR/Nfile
shows a positive relationship between these variables and
MR-clone proneness, confirming our hypotheses H2 and H3.
Odd ratio value of NRMR/Nfile is 1.505. This observa-
tion implies that the amount of redundant work increase
the probability of having a cloned MR.

The model indicates that the project duration (reflect-
ing project age) is one of the most important predictors
of probability leading to a cloned MR. Interestingly, the
model shows a negative relationship between project dura-
tion and MR clone-proneness. This may be because more
recent projects have been able to take advantage of tools
such as JIRA, that has made coordination via MRs easier.
Tools in use when older projects started did not facilitate
coordination by MRs. Another possibility is that a recent
organization policy of refactoring and merging forks lead to
a proliferation of young projects with many cloned MRs.

7. DISCUSSION

7.1 Forking and coordination in multi plat-
form development

Joorabchi et al. explored challenges in developing mo-
bile apps and revealed several issues about multiple plat-
form development, such as platform technical variety, main-
tenance of common core codebases, different scripting lan-
guage among platforms [10], growing testing space [1, 12],
and cross-platform security flaws [1]. In this study we con-
firmed that challenges occurs between tester-developer and
manager-manager. In 2001, Perry et al. conducted an ob-
servational case study of parallel development in a legacy
multiplatform software system and found that current tools,
processes and project management support for this level of
parallelism is inadequate [18]. Our study shows that even
with support of collaboration tools and modern VCS, iden-
tifying technical dependencies and maintaining effective co-
ordination across multiple platforms is still a challenge.

Previous studies suggested inner-project branching strate-
gis to deal with technical issues, such as new branch for new

release, service patch and testing [6]. In this study, we found
that inter-project forking is driven by organization strategy
and policy. Previous studies found that the main reasons
open source projects fork are technical variation, discontin-
uation of original project, community-driven, sustainability
and legal issues [17, 19]. Similar to open source projects,
forks are used to divide work into different organizational
teams and to deal with technical variations. Unlike open
source forks, commercial forks are driven by different sched-
ule release, balance between coordination and development
effort and general product development strategies.

Kotlarsky et al. defined an integrative framework with
four type of coordination mechanisms: coordination by orga-
nization design, work-based coordination, representations of
work-in-progress, inter-personal coordination and technology-
based coordination [13]. Our study reveals three types of
mechanisms: consistent usage of collboration tools across
platforms (Cloning MR in Jira), organization design (cross-
platform coordinators) and work-based coordination (review
meetings). While cloning MR is the main approach to iden-
tify and trace duplicated bugs, it is conducted in a rather
ad hoc manner. Organization design and work based mech-
anisms play a role in shaping process and practices in adopt-
ing technology-based coordination mechanisms.

7.2 Coordination needs in parallel development
Similar to findings in open source projects [19], most forks

evolve in parallel to the original projects. In our study, 65%
of forks are active, compared to 73.4% of continued forks
in open source projects [19]. In our case, there is a large
fraction of MR cloning in Spark (83% of its peak). Schwarz
et al. investigated code clone across repositories in an open
source ecosystem and found that 14% of all methods are
copied from another package in another project [24]. While
we did not directly measure the amount of clone across forks
in code level, the median value of fraction of cloned MRs is
29.16%. Perry et al. showed that a legacy system might
have 3-4 releases undergoing development at any given time
[19]. Our studies reveals some period of time Spark projects
has all 43 forks changed.

Bird et al. proposed a relationship between goals and
virtual teams on different branches [4]. The authors sug-
gested that if two branches have similar goals, they would
also have similar virtual teams or be at risk for communica-
tion and coordination breakdowns with the accompanying
negative effects. Shihab et al. found that branching does
have an effect on software quality and that misalignment of
branching structure and organizational structure is associ-
ated with higher post-release failure rates [25]. Cataldo et al.
measured Coordination conguence and found the mismatch
in logical coordination requirements and actual coordination
via MRs leads to lower software quality. In this study, we
found that amount of actual coordination via cloning MR
is reduced by defering coordination requirements using in-
dependent forks. However, the actual coordination is posi-
tively associated with amount of redundant works.

7.3 Threats to validity
While designing and conducting this study, various con-

scious decisions were taken to strengthen the validity of re-
sults. We used a suggested checklist [20] to ensure that we
had addressed all the critical requirements of case study de-
sign including aims of the study, defining the case, unit of

Table 6: Hypothesis testing
Concepts Hypotheses Result
Cross platform dev. H1 Reverse direction
Redundant work H2 Expected direction
Redundant work H3 Expected direction

analysis and data collection methods among others.
Construct validity refers to the relations between theory

and observation, ensuring that the treatment reflects the
construct of the cause and that the outcome reflects the
construct of the effect. In this study, perspectives of mul-
tiple platform development is quantified based on grounded
qualitative findings, which reduce this validity threat.

Internal validity refers to the existance of causal relation-
ships between treatment and outcomes. One way to re-
duce this threat is to include potential confounding factors
that may affect the relationship into the model. We include
project duration and several other predictors that may affect
the investigated relationship into the model.

External validity concerns about the generalization of ob-
served results to a larger population. The case in our study
could represent a large and complex product family in soft-
ware and telecommunication industry

Credibility concerns the confidence in the result. We adopted
several threat mitigation strategies, such as sending inter-
view transcripts to each interviewee for correction; involving
three researchers on study design and review, methodologi-
cal triangulation and detailed documented steps of data col-
lection, processing and analysis. Thus we believe that the
resulting detailed protocol serves as a good means to repli-
cate this study.

8. CONCLUSIONS
Our study provides a comprehensive understanding on

the state-of-the-practice of multiple platform development.
The Spark family has a large amount of parallel develop-
ment and potentially a lot of redundant work. While intra-
project branching is driven by technology, we found that
inter-project forking is driven by market and management
strategies. Our study also reveals cloning MRs is an im-
portant coordination mechanism in the Spark family. Logis-
tic regression analysis suggested that coordination needs de-
crease in parallel development among independent projects
but increase in projects with a large amount of redundant
work.

We reveal some opportunities for future resesarch in this
area. In this study, we only investigated the extent of fork-
ing activities and redundant work via commits and MRs. In
future work, we would like to address code divergence and
assess the number of identical files between them in a more
detail manner. In particular, we would like to investigate
if there is any difference between a file that diverges much
compared to a file that does not in term of software quality
and coordination efforts. This study revealed important co-
ordination mechanisms for multiple-platform development.
Future work can focus on evaluating the effectiveness of
these mechanisms. Last but not least, our study revealed
the main reasons and consequenes of code divergence. Fur-
ther studies can investigate criteria used to decide whether
or not to fork a code repository. The current status of the
project, coordination cost and amount of redundant work

would be important inputs for a decision making support
tool on whether and when to fork a code repository.

We also derive some implications that practitioners can
consider when taking action in multiple development plat-
form. The primary value of VCS is to allow parallel develop-
ment of branches to delay the merge time. In order to reduce
technical debt at system level, periodical synchronization of
forks is necessary. Testers need to understand that there
might be a lot of redundant functionalities among different
platforms. A look beyond scope of a single platform may
help to reduce amount of duplicated test cases. Product line
managers need to enforce formal processes for cloning MRs
across codebases, such as periodical review of cross platform
issues. Last but not least, it is helpful to automatically de-
tect code divergence and propagate changes in related files
to relevant developers.

9. REFERENCES
[1] S. Amatya and A. Kurti. Cross-platform mobile

development: Challenges and opportunities. In ICT
Innovations 2013, volume 231 of Advances in
Intelligent Systems and Computing, pages 219–229.
Springer International Pub., 2014.

[2] S. P. Analytics. Cross platform mobile development
tools market analysis and forecast, 2013.

[3] E. Arisholm, L. Briand, and A. Foyen. Dynamic
coupling measurement for object-oriented software.
Software Engineering, IEEE Transactions on,
30(8):491–506, Aug 2004.

[4] C. Bird, T. Zimmermann, and A. Teterev. A theory of
branches as goals and virtual teams. In Proc. of 4th
CHASE, CHASE ’11, pages 53–56, New York, NY,
USA, 2011. ACM.

[5] J. Bishop and N. Horspool. Cross-platform
development: Software that lasts. Computer,
39(10):26–35, Oct 2006.

[6] J. Buffenbarger and K. Gruell. A branching/merging
strtegy for parallel software development. In System
Configuration Management, volume 1675 of Lecture
Notes in Computer Science, pages 86–99. Springer
Berlin Heidelberg, 1999.

[7] M. Cataldo, A. Mockus, J. Roberts, and J. Herbsleb.
Software dependencies, work dependencies, and their
impact on failures. Software Engineering, IEEE
Transactions on, 35(6):864–878, Nov 2009.

[8] A. Charland and B. Leroux. Mobile application
development: Web vs. native. Commun. ACM,
54(5):49–53, May 2011.

[9] S. C. D. Moren, D. Miller. What you need to know
about apple’s ssl bug, 2014.

[10] R. Fahy and L. Krewer. Using open source libraries in
cross platform games development. In Games
Innovation Conference (IGIC), 2012 IEEE
International, pages 1–5, Sept 2012.

[11] D. H. Hutchens and V. R. Basili. System structure
analysis: Clustering with data bindings. IEEE Trans.
Softw. Eng., 11(8):749–757, Aug. 1985.

[12] M. Joorabchi, A. Mesbah, and P. Kruchten. Real
challenges in mobile app development. In Empirical
Software Engineering and Measurement, 2013 ACM /
IEEE International Symposium on, pages 15–24, Oct
2013.

[13] J. Kotlarsky, P. C. van Fenema, and L. P. Willcocks.
Developing a knowledge-based perspective on
coordination: The case of global software projects. Inf.
Manage., 45(2):96–108, Mar. 2008.

[14] R. E. Kraut and L. A. Streeter. Coordination in
software development. Commun. ACM, 38(3):69–81,
Mar. 1995.

[15] A. Mockus. Amassing and indexing a large sample of
version control systems: Towards the census of public
source code history. In Proc. of 6th MSR, MSR ’09,
pages 11–20, Washington, DC, USA, 2009. IEEE
Computer Society.

[16] A. Mockus, R. Hackbarth, and J. Palframan. Risky
files: An approach to focus quality improvement
effort. In Proc. of 9th ESEC/FSE, ESEC/FSE 2013,
pages 691–694, New York, NY, USA, 2013. ACM.

[17] L. Nyman, T. Mikkonen, J. Lindman, and

M. FougÃĺre. Perspectives on code forking and
sustainability in open source software. In Open Source
Systems: Long-Term Sustainability, volume 378 of
IFIP Advances in Information and Communication
Technology, pages 274–279. Springer Berlin
Heidelberg, 2012.

[18] D. Perry, H. Siy, and L. Votta. Parallel changes in
large scale software development: an observational
case study. In Proc. of ICSE, pages 251–260, Apr 1998.

[19] G. Robles and J. M. GonzÃ ↪alez-Barahona. A
comprehensive study of software forks: Dates, reasons
and outcomes. In Open Source Systems: Long-Term
Sustainability, volume 378 of IFIP Advances in
Information and Communication Technology, pages
1–14. Springer Berlin Heidelberg, 2012.

[20] P. Runeson and M. Höst. Guidelines for conducting
and reporting case study research in software
engineering. Empirical Softw. Engg., 14(2):131–164,
2009.

[21] J. Savolainen, M. Mannion, and J. Kuusela.
Developing platforms for multiple software product
lines. In Proc of 16th SPLC, SPLC ’12, pages 220–228,
New York, NY, USA, 2012. ACM.

[22] S. R. Schach. Practical Software Engineering. Richard
D. Irwin/Aksen Associates, Homewood, IL, USA, Feb,
1992.

[23] K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 2001.

[24] N. Schwarz, M. Lungu, and R. Robbes. On how often
code is cloned across repositories. In Proc. of 34th
ICSE, pages 1289–1292, June 2012.

[25] E. Shihab, C. Bird, and T. Zimmermann. The effect of
branching strategies on software quality. In Proc. of
the ACM-IEEE ESEM, ESEM ’12, pages 301–310,
New York, NY, USA, 2012. ACM.

[26] M. Swider. Microsoft highlights 299m skype users,
1.5b halo games played, 2013.

[27] A. I. Wasserman. Software engineering issues for
mobile application development. In Proc. of the
FSE/SDP FoSER, FoSER ’10, pages 397–400, New
York, NY, USA, 2010. ACM.

[28] R. K. Yin. Case study research: Design and methods.
Sage Pub., Thousand Oaks, CA, 2003.

