
  

A Web-Based Approach  
to Interactive Visualization in Context 

 

Audris Mockus and Stacie Hibino 
Bell Labs, Lucent Technologies 

263 Shuman Boulevard 
Naperville, IL 60566 USA 

{audris, hibino}@research.bell-labs.com 

Todd Graves 
Statistical Sciences Group 

MS F600, Los Alamos National Laboratory 
Los Alamos, NM 87545 USA 

tgraves@lanl.gov 
 

 
ABSTRACT 
This paper proposes a framework for easily integrating and 
controlling information visualization (infoVis) components within 
web pages to create powerful interactive “live” documents, or 
LiveDocs. The framework includes a set of infoVis components 
which can be placed and linked within a standard HTML 
document, initialized to focus on key analysis results, and directly 
manipulated by readers to explore and analyze data further. In 
addition, authors can script the manipulation of views at the user 
interaction level (e.g., to set view options, select items within a 
view, or animate a view). We illustrate our approach with a 
sample analysis of a real-life data set.  

Keywords 
web-based information visualization, live documents, authoring 
visualization web pages  

1. INTRODUCTION 
Advances in Java and WWW browsers are making it possible for 
web-based information visualization (infoVis) to become a reality. 
Today, it is practical for WWW versions of scientific publications 
to allow their readers to interact with, rather than just review, 
visualizations of data analysis results. Such interactive documents 
can present graphical results in context as in a static, hardcopy 
publication while at the same time providing an interface for 
directly accessing and analyzing the data first-hand. In this way, 
readers can confirm or disprove the author’s results as well as 
explore the data in search of additional insights. We refer to this 
type of interactive document with embedded, contextual 
information visualization components as a Live Document [4], or 
LiveDoc, for short. In this paper, we present a new set of LiveDoc 
principles that, based on our experience, make them effective 
presentation tools. We also provide technical details on the 
authoring of LiveDocs. 

Two primary obstacles stand in the way of the realization of the 
LiveDoc paradigm. First, LiveDocs are far harder to compose than 

traditional static documents: most prospective LiveDoc authors 
would need to learn a new programming language and design a 
user interface through which their audiences can manipulate the 
data, when they would prefer to focus on the research content of 
their documents. Second, some LiveDoc readers will have neither 
the time for, nor the interest in, the deeper explorations that the 
interactivity allows. The LiveDoc author risks losing this audience 
altogether, particularly if the user interface requires too much time 
to learn, if it takes too long to access the data, or if the LiveDoc 
seems too radical a departure from their static document 
expectations. What is required is a way to aid authors in efficiently 
creating more effective interactive documents. 

One approach to authoring online infoVis documents involves 
using (or, more likely, re-implementing) existing visualization 
technology. Although progress is still needed to increase the 
efficiency and scalability of infoVis on the WWW, several web-
based infoVis applets and applications are emerging for analyzing 
data such as up-to-date financial or geographical data online (e.g., 
[11], [9]). Currently, however, most web-based interactive 
visualizations focus more on sophisticated, domain-specific views 
and several appear more like stand-alone applications that happen 
to be accessible through a web browser. Thus, such visualizations 
can be limited to their own domains, and they may potentially 
force users to experience long delays downloading complex 
visualizations.  In addition, such views are not designed for 
distribution in a static form, and they may require users to spend a 
fair amount of time learning the system before the users can start 
to gain insight from their data. 

In designing our approach to LiveDocs, we address these 
obstacles by using simple, flexible data visualization components 
which are easily embedded in standard web documents. In 
addition, we increase the analytic power of these simple 
components by allowing authors to easily link them together. 
Currently available sample components include bar charts, 
smoothed histograms, and dynamic tables (a form of Rao and 
Card’s Table Lens [10], an enhanced spreadsheet-like view). 

Our flexible and simple components greatly reduce readers’ 
learning time required for interacting with the views, especially 
when authors use HTML controls to automate recommended 
tasks. The domain-independent nature of our views lets authors 
use them in different contexts and allows readers to transfer their 
learning about the views to subsequent LiveDocs. Our LiveDoc 
framework provides a tailorable (see, for example, [5], [2]) and 
in-context user interface where only the functionality pertinent to 

 
 
 



  

the presentation is exposed to the user. The conventional interface 
in the form of HTML links or HTML form widgets is provided in 
the appropriate location in the document, along with instructions 
and suggestions for their use. Placing interactive tools within the 
text is in the spirit of the concept of illustrations appearing in 
context, exemplified by [12]. Another advantage is that readers 
can easily and fruitfully read our documents as if they were 
ordinary static documents, since our components can be set to 
appropriate initial states to appear just like illustrations and tables 
in an ordinary document.  Finally, despite the simplicity of 
individual views, they can be easily linked together to achieve 
substantial analytic power, see, for example [13].  

Together with these advantages, our approach also allows for 
efficient authoring of online documents: web page authors can 
easily embed powerful visual presentations within the context of 
their documents through a standard applet interface. Key features 
for authors include the following: 

•= authors can add views to a web page using a simple 
procedure; 

•= authors can add links or controls for manipulating the views 
(e.g., selecting subsets, setting sort order); 

•= authors can configure options for the views, including data 
used, which variables to display, and an initial state for each 
view; 

•= authors can easily link views together while the system 
automatically takes care of technical details such as sharing 
data. 

Overview. In Section 2, we describe LiveDoc benefits to the 
reader, followed by a discussion of benefits to the author in 
Section 3. We then present details about the core LiveDoc 
components in Section 4. In Section 5, we provide a sample 
scenario using LiveDocs to present some results from the analysis 
of some sports data on truck racing. In Section 6, we discuss some 
related work and in Section 7, we summarize our conclusions and 
describe some future work. Finally, we include technical details 
about authoring LiveDocs in the Appendix. 

2. AN EFFECTIVE, APPROACHABLE USER 
INTERFACE FOR READING LIVEDOCS 
In this section, we review LiveDoc readers’ needs as summarized 
in the introduction and present our approach to addressing these 
needs. 

2.1 Easy Access to Key Results in Context 
Ideally, readers should be able to review the core content and 
results presented in a LiveDoc with very little, if any, more effort 
than that required to read a static document. In our experience of 
writing LiveDocs to be viewed by users who are not experts in 
visualization techniques, we have found this to be especially true. 
Most such users tend to be more interested in seeing the key 
results upfront rather than having to learn how to explore in order 
to get to the desired findings. In our approach, we address these 
needs through applet initialization parameters and scriptable user 
interactions. 

The applet initialization parameters allow authors to set the initial 
state of a view rather than presenting a view in some default state. 
For example, rather than presenting a set of linked views in a 

default state where all data items are selected, we may set the 
initial state to highlight a data subset of interest. In this way, the 
initial state can be used to automatically present and emphasize an 
interesting result upfront, without requiring interactions from the 
user. 

Scriptable user interactions allow authors to provide simple links 
or control widgets to the readers. Such scripts have the following 
key advantages: 

•= they provide readers with quick access to other states of a set of 
views, thus enabling them to focus on various results and 
perspectives that a set of views can provide rather than on the 
mechanisms on how to get to a particular state, 

•= they free authors from having to explain how to accomplish 
various user interactions,  

•= they enable authors to provide a series of user interactions in a 
single script. 

For example, consider the case where the author wants readers to 
sort a bar chart by size and select the top three bars in the view. If 
authors could not script user interactions, they might need to 
include instructions such as “To select the top three bars, first 
click the right mouse button in the bar chart to access the 
submenu and select ‘Sort by Count’ to order the bar chart by 
height. Then, use the left mouse button to select the top three bars 
in the chart.” Through scripting, authors can reduce their text to 
“Looking at the top three bars, we see that….” In this latter case, 
“top three bars” is a link (href in HTML lingo) to the script for 
sorting the bar chart and selecting the top three bars. Note how the 
scriptable version provides access to user interactions in context. 

2.2 Simple Views and Reduced Wait Time 
If readers are faced with unbearable wait times or overwhelmed 
with overly complex interfaces, they are less likely to adopt the 
LiveDoc approach to interactive visualization in context. We 
reduce the overhead cost of accessing the online document and 
related data by focusing on simple, smaller views. We also only 
download the data required for the specified view rather than the 
whole data set. We reduce readers’ learning time for interacting 
with views by avoiding overly complex views, again focusing on 
simple and familiar views, and also providing scriptable links and 
control widgets that authors can set in context. 

2.3 Interactively Exploring Results  
The real power of a LiveDoc, however, is to go beyond static 
documents and support users in exploring the underlying data on 
their own. We improve the analytic power of the online document 
by providing a framework in which authors can compose a 
presentation of results from a set of views (i.e., select which ones 
they want) and easily link these views together (views are linked if 
user’s selection in one view automatically propagates the 
corresponding selection to all other linked views.) Even a simple 
bar chart view and dynamic table, when linked together or to 
other views, can add power to a presentation (e.g., see Section 
5.1). 

Interested readers may explore the data using all of the features of 
the linked views to conduct their own independent investigations 
of the presented data and, possibly, arrive at their own 
conclusions that are more relevant to the reader and may be 
different from the ones presented by the authors. 



  

3. AN EFFICIENT, EXTENSIBLE 
FRAMEWORK FOR AUTHORING LIVEDOCS 
3.1 Linkable InfoVis View Components 
Our framework for creating LiveDocs provides authors with a set 
of simple, configurable, and linkable infoVis views which authors 
can easily add to a web page through a standard applet interface. 
This approach relieves authors from the burden of programming 
each view by hand and supports them in creating LiveDocs with 
some of the effective and accessible features described in the 
previous section. Authors can simply pick and choose the 
appropriate views for their data and tailor them through author-
configurable options to meet their needs. 

3.2 JavaScript Library of Common Functions 
In addition to linking, we provide a public command-type 
interface to the views to emulate all GUI interactions. This 
interface may be used to script the initial state of the views or to 
provide alternatives to a GUI, e.g., speech interface. 

We also include a JavaScript library of common functions so 
authors can easily add calls to these JavaScript functions to 
simulate GUI interaction. For example, we provide functions for 
sorting bar charts and dynamic tables, selecting data within any of 
the views, and animating selection within bar charts. Readers may 
choose to record a sequence of interactions to be later replayed to 
create a customized version of the document. 

3.3 An Extensible Framework 
While the framework provides an efficient approach to authoring 
LiveDocs, it can also be easily extended to accommodate new 
views. More specifically, linking between existing views is 
handled through a form of publisher-subscriber methods. This 
means that any new view developed within the bounds of the 
linking model can then be added and linked to any existing views 
without requiring the modification or recompilation of any of the 
existing views. Thus, LiveDoc authors can use their own new 
views or combine our views with existing domain-specific views, 
providing more powerful analysis capabilities. 

4. CORE LIVEDOC COMPONENTS 
The current core set of LiveDoc components includes three basic 
types of views (bar chart, smoothed histogram, and dynamic 
tables). Each of these is described in more detail below. 

Bar Chart. LiveDoc bar charts are used to indicate the number of 
cases (i.e., frequency distribution) for each value of a categorical 
variable. Linking a bar chart to other views provides added 
analytical power. Clicking on one or more of the bars allows users 
to select subsets of cases in all linked views. If another linked 
component, for example a table or another bar chart, is used to 
select a subset, each bar is partially highlighted according to the 
fraction of cases in that bar have been selected.  

Smoothed Histogram‡. While LiveDoc bar charts are used to show 
the frequency distribution of categorical variables, we use the 

                                                           
‡ While bar charts are useful when variables take on a small 

number of values which might not have an obvious order, 
smoothed histograms are better for working with variables 
for which interesting subsets are generally continuous 

term “histogram” to describe a smoothed distribution of 
continuous variables. Selection within a histogram is very similar 
to the bar chart—users can select values via direct manipulation 
and selections made in other linked views are reflected through 
corresponding partial highlighting within the histogram. 

Dynamic Tables. The LiveDoc dynamic table is modeled after the 
Table Lens [10] and provides a spreadsheet-like view of the data. 
Each column within a dynamic table contains a variable which is 
measured on each of the cases shown in the rows. The table 
allows panning and zooming, so that subsets of the cases can be 
hidden from view. Each column of numerical data is displayed 
using a collection of horizontal bars, one bar per cell, where the 
length of a bar is proportional to the numerical value of its cell. 
This allows the user to see trends across rows and relationships 
among columns. If the user has zoomed in far enough, the 
numeric values of the variables are also printed in the table (e.g., 
see Figure 1). Users can select subsets of cases via the mouse 
(after doing so, the selected rows appear in yellow, shown as light 
gray in this paper). By clicking on a column heading, the user 
selects the variable in that column. 

HTML Links and Controls. Since we support the use of HTML 
and JavaScript for scripting interactions to the view(s), we enable 
authors to include any of the standard control widgets available 
through HTML: check box button, radio button, input box, or 
drop-down choice menu. In addition, users can attach a JavaScript 
function call directly to an HTML link. Examples of our LiveDoc 
JavaScript functions are described above in Section 3.2 and 
sample JavaScript links and control widgets are presented in our 
sample LiveDocs described in the next section. 

Implementation. All LiveDoc components have been implemented 
as Java 1.0 applets. The components have not been ported to later 
versions of Java due to the constraint that many of our target 
LiveDoc readers are running web browsers that only support Java 
1.0. The JavaScript controls access applets by invoking their 
public methods. This is referred to as LiveConnect in the 
Netscape browser and it works identically in another popular 
browser made by Microsoft. 

5. REAL-LIFE SCENARIO 
We illustrate our LiveDocs approach through a real-life scenario 
about the analysis of sports data on truck racing. The Craftsman 
Truck Series is one of the National Association of Stock Car Auto 
Racing’s (NASCAR®) top racing series.  The vehicles look 
roughly like commercially available pickup trucks but contain 700 
horsepower engines and reach speeds in excess of 180 miles per 
hour on some tracks.  The 1999 season consisted of 25 races, with 
approximately 35 drivers participating in each, and with a total of 
120 drivers appearing in at least one race.  Race data are 
interesting in that they arise from interactions between two 
groups: drivers and races.  We obtained the data from NASCAR’s 
web site, www.nascar.com. Information is also available through 
www.sears.com/craftsman.   

                                                                                                 
ranges.  Potential interactions with these histograms 
include changing the amount of smoothness; they are 
constructed using an Epanechnikov kernel.   



  

 

     

Figure 1. Excerpts from two LiveDocs on the 1999 NASCAR® Truck Racing Season. The web page on the left 
summarizes information about individual drivers, while the web page on the right examines data characterizing the 
races.
In the remainder of this section, we present some sample 
LiveDocs for analyzing the truck racing data described above. We 
present an excerpt from the static version of the LiveDoc exactly 
as it appears in the browser window (e.g., see Figures 1-2), 
discuss ways the user may interact with the infoVis components 
embedded within the LiveDoc and finally, describe how to 
compose such a LiveDoc. 

5.1 Example 1: Overview of Drivers and Races 
Figure 1 contains two LiveDocs, one which focuses on the 
drivers, and one which shows details about races.  The first 
document includes a dynamic table containing information about 
the drivers such as their position in the season points standings, 
their truck manufacturer, and summary information about race 
results such as numbers of top ten finishes and total prize money.  
The dynamic table is linked to and followed by three additional 
views—a bar chart of drivers’ number of wins, a smoothed 
histogram of drivers’ prize money, and a bar chart of truck 
manufacturers. 

The second document in Figure 1 focuses on the study of the 
truck races included in the 1999 season.  Bar charts categorize the 
races by the track type (long or short oval or road course) and race 
winner.  Smoothed histograms display distributions of angle of 
banking of the track, track length in miles and the speed of the 
track, as measured by the best time by drivers in qualifying.  A 
dynamic table (in the lower right-hand corner of the six views) 
contains a single column listing information about race dates. 

Potential User Interactions 
In the first document of Figure 1, the dynamic table initially 
displays only the top several drivers, but the text encourages the 
reader to zoom and scroll, e.g. to locate the two drivers who drove 
in only a few races but won one.  The supporting views are useful 
for highlighting subsets of the data so that the reader can restrict 

attention to these subsets when viewing the dynamic table.  For 
example, in the document shown on the left of Figure 1, the 
reader has selected drivers with zero wins in order to study how 
high in the standings it is possible to finish without the benefit of 
a win.  The document also contains JavaScript controls (e.g., 
Select 0 wins) that the reader can click on to follow analyses 
recommended by the author.  These controls are conveniently 
located within the text explaining their usage and in close 
proximity to the view itself. 

Readers can also easily view the drivers with the most prize 
money by interacting with the “total winnings” histogram or the 
neighboring JavaScript control.  This helps point out some 
surprising nonmonotonicities: e.g. the seventh place driver won 
almost as much as the champion by virtue of having won a 
$100,000 bonus in the 100th Craftsman truck race.  This overview 
page contains a link to a page with more detailed information in 
drivers’ race results.  Finally, the manufacturer bar chart can be 
used to compare manufacturers: for instance, relatively few 
drivers use Dodge trucks, but a high percentage of Dodge drivers 
are successful.   

The second document of Figure 1 displays details about the races.  
This document demonstrates some ways in which JavaScript 
controls can enable exploratory analysis with minimal user 
interaction through animation: when the user clicks on animate 
track type, the control loops over the bars in the track type bar 
chart, selecting each in turn, and propagating the selection to the 
other linked views, so that the reader sees characteristics of each 
track type in turn.  The text below recommends comparing the 
races won by the three drivers who won at least three races: while 
the three did not differ in preferred speed or track length, Greg 
Biffle seemed to prefer the flattest (least banked) tracks, Jack 
Sprague was best at driving at a severe angle, while Dennis Setzer 
had most moderate tastes.   



  

Creating the LiveDoc Example 
In this section, we provide some technical details on creating the 
first sample LiveDoc of Figure 1. Excerpts of the HTML source 
for the LiveDoc web page are given below. It starts with HTML 
headers (containing definitions of relevant JavaScript functions), 
continues with the presentation text and includes controls in the 
form of links and views included via applet tags. While we 
provide general details describing how to author a LiveDoc in the 
Appendix, we explain some of the specifics of this example 
below. Due to space limitations, we do not include the full HTML 
source for the document, but rather highlight key examples and 
omit redundant text. 

The first control, provided as a link in the text above the dynamic 
table, is a link that allows the reader to scroll down within the 
dynamic table:  

<a href="javascript:doCommand('PAN VERTICAL -10','driverlist')">down</a> 

The “javascript:” type tells that the link contains JavaScript code, 
“doCommand” is a utility function that invokes  public method 
“doCommand” of an applet “driverlist”. The first argument is the 
command to be executed by the applet. 

The fifth control (i.e., the one for Select 9 wins) is also a link: 

<a href="javascript:doCommand('REPLACESELECT ORDER SMALLEST','wins’) ">Select 9 wins.</a> 

It selects the bar on the left that contains drivers who won nine 
races.  

The first applet tag describes the Dynamic Table view:  

<applet name=driverlist code=spr.views.DTable.class  width=700 height=250> 
<param name=url value="drivers.txt"> 
<param name="Variable" 
value="Standings,Driver,Truck#,Mfr,TotalPts,Starts,Wins,Top5,Top10,Total$"> 
<param name=”SortBy” value=”Standings”> 
</applet> 

 

Figure 2. A LiveDoc on detailed information from the 1999 NASCAR® Truck Racing data. 

 



  

The “url” parameter specifies a URL for the data to be 
displayed in the table. The “Variable” parameter lists the 
variables to be displayed in the table. The last parameter 
indicates that the table will initially be sorted by the column 
named “Standings”. 
The second applet is a bar chart of number of wins: 

<applet name=wins code=ldoc.BarApplet.class width=175 height=130> 
<param name=url value="drivers.txt"> 
<param name=”Variable” value=”Wins”> 
</applet>    
5.2 EXAMPLE 2: Relationship between 
Qualifying and Final Results 
The next LiveDoc was designed to investigate the drivers’ results 
and qualifying performance in greater detail.  The top table 
contains brief summary information about the drivers and can be 
used to select subsets of drivers to highlight the two bar charts 
below.  The two bar charts contain finishing position and 
qualifying position information (qualifying consists of a single 
solo lap around the track by each driver and determines the order 
in which drivers start the race).  By selecting a single driver (e.g., 
Biffle, as shown in Figure 2) one sees distributions of his 
qualifying and finishing positions.  By selecting the top several 
drivers on the top list, one can investigate the hypothesis that top 
drivers tend to qualify better than they finish, since more 
uncontrollable events occur in the course of an entire race. 

Also, one can study the effect of starting position on finishing 
position.  There is naturally a trend in which faster qualifiers tend 
to finish better, but a surprising result appears when the user 
clicks the JavaScript control to animate the qualifying results.  
The distributions of finishing position for drivers that start in 
given positions appear to oscillate back and forth, with odd 
numbered starting positions being more favorable.  Odd and even 
positions differ because the race begins with the drivers in two 
files, with the odd numbered qualifiers on the inside of the track. 
Furthermore, if we select the winners, we see that one driver 
managed to win, even when starting at the 26th position (in the 
qualifying results chart). By selecting the 26th position in 
“intersect” mode (using shift-click, or “INTERSECTSELECT” 
command), we can immediately identify the driver who managed 
to accomplish that task. 

6. LIVEDOC USAGE AND OTHER 
APPLICATIONS 
The LiveDoc framework has evolved over the past couple of 
years, primarily through its use in a project focusing on 
understanding and tracking the development of large software 
systems. Over 100 LiveDocs were created as part of this project 
(in this paper we present only examples with nonconfidential 
sports data). These LiveDocs were used to facilitate collaboration 
among researchers on the project, as well as to disseminate results 
to researchers inside and outside of the project. In addition, 
LiveDocs containing summary information of key results were 
presented to middle- and upper- management of the software 
development departments being studied. The results provided 
managers with feedback on how the software of their department 
had evolved over time as well as hints to how they might 
restructure their code or their organizations to improve the 
software engineering process. 

The early version of our LiveDocs framework did not allow 
authors to set the initial state of LiveDoc view components. When 
readers reviewed these older LiveDoc web pages, they could read 
about key results, but they were presented with visual results that 
did not initially highlight or match the textual description of 
results. This was particularly problematic for managers, who often 
did not have time to interactively select or explore the data on 
their own. This user feedback led to the additional applet 
parameter for setting a view’s initial state. The ability to set the 
initial state of the view applets allows us to present key results 
upfront while still preserving the ability to let users explore the 
data on their own (and in context), if they are inclined to do so. 

Earlier versions of our LiveDocs framework also included control 
widgets as separate Java applets rather than as JavaScript 
components. While the concept and functionality of the Java 
applet and JavaScript control widgets are very similar, the use of 
JavaScript has the added advantages of smaller size and greater 
extensibility. That is, with the use of JavaScript, readers do not 
have to wait while extra applets are being loaded, and authors do 
not have to program new controls in Java when a new view or 
functionality is added. The move to JavaScript necessitated the 
introduction of a simple language to script the views (since 
JavaSript can pass strings to Java methods, but cannot directly 
create Java objects). Such a language can be used to script 
arbitrary user interactions and to provide an alternative to a GUI 
interface. 

The use of LiveDocs within the above project on analyzing large 
software systems also led to the addition of new LiveDoc views 
that were tailored to particular problem domains. They included 
geographic and abstract layouts and views to display software 
code and changes. Most of the applications, however, did not 
require construction of additional domain specific views. 

In addition to the LiveDocs for presenting the analysis of truck 
racing data (Section 5) and the LiveDocs for characterizing large 
software systems described above, we have also applied the 
LiveDocs approach to the analysis of organizational data and to a 
case study of the Ty Company’s success with the Beanie Baby 
collectible toys.  

In the future, we plan to provide a new, direct-manipulation 
interface for authoring LiveDocs. This will be done within the 
context of a larger project referred to as InfoStill (short for 
information distillery; see [14] for more details). In the InfoStill 
framework, authors will have a GUI interface for creating 
LiveDocs and the HTML, including applet tags, will be 
automatically generated for them. 

7. RELATED WORK 
Commercial or free Java applets of simple charts such as bar 
charts, pie charts, etc. are available today (e.g., [7]). Such charts 
have the advantage of dynamically displaying the latest version of 
data, allowing authors to include simple charts without having to 
program them by hand, while appearing like a typical static 
document and thus easily accessible to readers. Although some of 
these charts support some user interaction, such interaction is 
typically very limited (e.g., panning in 2-D charts, rotating of 3-D 
bar charts). Also, to our knowledge, none of these existing applets 
support linking between views and thus lack the analytical 
capability that is available through LiveDocs. That is, the power 
of the LiveDocs approach is that it provides both access to simple 



  

views and support for conducting sophisticated analysis through 
data exploration within a linked views paradigm. 

As mentioned in the introduction, more sophisticated web-based 
infoVis applets are becoming available for visualizing and 
exploring data such as financial or geographical data [11], [9]. 
Unfortunately, these more complex visualizations tend to be 
tailored to a particular domain and/or are larger in size. Thus, 
while such views may provide unique analysis capabilities, they 
do so at the expense of requiring users to learn a new interface. 

Much of the research conducted within the infoVis community 
has focused on creating new visualizations or interfaces to 
visualizations to support users in accessing or analyzing data via 
direct manipulation (e.g., [1], [3]). While some attention has been 
given to the problem of automating the presentation or 
construction of appropriate visualizations (e.g., [8]), such work 
has not taken the notion of visualization in context (e.g., with 
textual descriptions or annotations) into consideration. Previous 
work on analyzing the types of tasks users conduct during data 
analysis through infoVis indicates that users consider 
presentation-related tasks (i.e., creating and describing a 
presentation of results) to be both important and time-consuming 
[6]. Our LiveDocs approach is designed to support authors in 
easily creating and customizing such presentations of results in 
context, while still providing interactivity to enable readers to 
easily investigate claims made by the authors. 

8. CONCLUSION 
In this paper, we presented our current LiveDocs framework for 
providing a simple yet powerful information visualization 
platform targeted to users that have limited to moderate 
motivation to use sophisticated visualization systems. 

The framework is based on a set of visualization components that 
are used to compose domain specific Web pages via simple 
HTML authoring. The parameters of the components allow 
authors to specify linking among the components, and to initialize 
and customize the set of controls for the component. 

We illustrated our framework through actual LiveDoc examples 
applied to real-life sports data. Our examples illustrate how 
setting the initial state of LiveDoc components provides visual 
support in presenting key data analysis results; linked interactive 
views allow readers to further confirm and explore results on their 
own; and author-scripted interactions presented in context, engage 
the reader and minimize the learning effort. 

9. ACKNOWLEDGMENTS 
This research was supported in part by National Science 
Foundation grants SBR-9529926 and DMS-9208758 to the 
National Institute of Statistical Sciences.  

10. REFERENCES 
[1] Ahlberg, C. and B. Shneiderman. (1994). “Visual 

Information Seeking: Tight Coupling of Dynamic 
Query Filters with Starfield Displays.” In CHI’94 
Conference Proceedings. New York, NY: ACM 
Press, 313-317. 

[2] Appelt, W., Hinrichs, E. and G. Woetzel. (1998). 
“Effectiveness and efficiency: the need for 
tailorable user interfaces on the Web.” In 

WWW’98 Conference Proceedings. 
[3] Carlis, J.V. and Konstan, J.A. (1998). “Interactive 

Visualization of Serial Periodic Data.” In UIST’98 
Conference Proceedings. New York, NY: ACM 
Press, 29-38. 

[4] Eick, S.G., Mockus, A., Graves, T.L. and A.F. 
Karr. (1998). A Web Laboratory for Software 
Data Analysis. In World Wide Web, 1(2), 55-60. 

[5] Fischer, G.  and Girgensohn, A. (1990). “End-user 
modifiability in design environments.” In CHI’90 
Conference Proceedings. New York, NY: ACM 
Press, 183-192. 

[6] Hibino, S. (1999).  “Task Analysis for Information 
Visualization.” In Third International Conference 
on Visual Information Systems (VISual’99). 
(Huijsmans, D.P. and A.W.M. Smeulders, Eds.). 
Berlin: Springer-Verlag, 139-146. 

[7] KL Group Inc.  (1999). JClass Java Components. 
http://www.KLGroup.com/ 

[8] Kolojejchick, J., Roth, S.F., Lucas, P. (1997). 
“Information Appliances and Tools in Visage.” 
IEEE Computer Graphics and Applications, 
July/August, 31-41 

[9] Professional Geo Systems. (1999). LAVA GIS 
Browser. http://www.pgs.nl/ 

[10] Rao, R. and S.K. Card. (1994). “Table Lens: 
Merging Graphical and Symbolic Representations 
in an Interactive Focus Plus Context Visualization 
for Tabular Information.” In CHI’94 Conference 
Proceedings. New York, NY: ACM Press, 318-
322. 

[11] SmartMoney.com (1999). SmartMoney’s Map of 
the Market. 
http://www.smartmoney.com/marketmap 

[12] Tufte, E. R. (1983). The Visual Display of 
Quantitative Information. Cheshire, CT: Graphics 
Press. 

[13] Wills, G.J. (1999). “Natural Selection: Interactive 
Subset Creation.” Journal of Computational and 
Graphical Statistics. To appear. 

[14] Cox, K., Hibino, S., Hong, L., Mockus, A., and 
Wills, G. (1999). “InfoStill: A Task Oriented 
Framework for Analyzing Data through 
Information Visualization”. Proc. IEEE 
Information Visualization Symposium Late 
Breaking Hot Topics, pages 19-22, October 1999. 

APPENDIX: AUTHORING LIVEDOCS 
The technology for composing a live document is in many ways 
similar to the technology for creating a regular presentation or 
report. A favorite word processor or HTML editor may be used to 
create the text and format the presentation. The illustrations (at 
this point, dummy images corresponding to the initial state of our 
interactive views) can be placed in the appropriate places within 
the document. Once that is completed, the document can be 
exported to HTML format, if necessary, and the dummy 
illustrations and controls can be replaced by the actual views. A 
significant departure from creating a regular document is the 



  

necessity to decide which interactions with which views to 
provide to readers and where to place the appropriate controls. 

Our base prototype collection includes Bar Chart, Histogram, and 
Dynamic Table views. When adding a view to a LiveDoc, authors 
must specify the type of view and data source parameters and may 
optionally set an initial state of the view and information for 
linking views together. The table below describes the different 
types of view configurations. The parameters for the applet tag 
are specified in name/value pairs. Both the name and the value are 
strings of text. 

If the views share the same string in the url parameter, those 
views are linked together in the sense that when the user 
highlights a subset in one view, it is automatically highlighted in 
another view. Also, views that have a common url parameter do 
share the same data, thereby reducing the download time of the 
presentation. The Join parameter allows linking of data from 
two data sources by specifying variables to match in the two 
sources. 

The command language represents a string based alternative to 
user GUI interactions. It includes commands for panning and 
zooming, selection of subsets, sorting columns or bars, and 
finding a subset of records with specified values. 

Table A1. View Parameters. 
Parameter Effect 
Data Source  

url 
Show 

Variable 

set the data source  
select a subset of data records to view  
identify which data fields to show 

Initial State  
SortBy 

Highlight 
Transform 

Show Policy 
doCommand 

set sort criteria for the initial state 
highlight a subset of the data 
control visual representation of the data 
display all case or only selected cases 
execute a command that changes the state of 
the view  

Linking Views 
Join link views from different data sources 

 

 
 


