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Abstract

We consider any quantity which varies as a smooth function of
space and time but is measured as the average value over a region in
space-time. As a particular example, we consider the incidence rate of
the disease mumps; the reported data are given on a state-by-month
basis (for the period 1968-1988). By using animation techniques to-
gether with various smoothing methods we make a sequence of suc-
cessively smoother dynamic maps which enable us to see the develop-
ment of the disease in both space and time dimensions. We find that
a smooth function (of the incidence rates) is the best way to convey
the behavior of the spread of the disease. We consider various scaling
techniques, ways to smooth the data, ways to estimate a smooth func-
tion of the incidence rates, and how to choose an appropriate color
scale.

The paper also includes the description of algorithms to produce
this kind of animation and a detailed description of the example con-
cerning mumps disease in the United States.

*Partially supported by ONR Contract N00014-91-J-1024 and by Bureau of the Census
under Joint Statistical Agreement 91-25. The equipment used to generate the videotape
was acquired with partial support from NSF Grant DMS 88-05406.
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1 Introduction

Most geographic data are reported as counts or averages over a region
in space for an interval in time. We want to display the intensity function
underlying the data using dynamic graphics. We will exemplify this problem
with data on the disease mumps collected monthly in the United States from
1968 until 1988.

We created the dynamic graphic display from a sequence of images shown
in a rapid sequence. We could not compute the images at the rate we wanted
to see them, so we recorded them individually on a video recorder.

We begin in Section 2 with a detailed description of the problem we are
trying to solve, namely estimation and display of a smoothly varying function
of space and time. We also provide a detailed description of the data in the
specific example we consider (mumps). In Section 3 we describe in some
detail the animation methods we use. In Section 4 we consider the statistical
problem of estimating a smooth function from averages over regions. Several
different animations with varying degrees of smoothness in space and time
are described in Section 5. We conclude with some unsolved problems in
Section 6.

2 Problem Description

We are interested in the estimation and display of a smoothly varying
scalar function f with a three dimensional argument (z,y,t). We think of =
and y as indicating spatial coordinates and ¢ as indicating a time coordinate.
The data that we have available to estimate the function f consists of average
values of the function over regions in space-time.

The natural way to display the function is by means of a dynamic graphi-
cal display. Because of the complexity of the estimation process the dynamics
can only be done by “off-line” animation; that is, an interactive display can-
not be computed in a reasonable amount of time. The animation consists of
a sequence of images (frames) shown one after the other in a rapid sequence.
Each image (frame) is a rectangular array of color values corresponding to
every pixel of the display. A pixel (picture element) is the smallest element of
a display that can be individually manipulated. Those color values indicate
values of the function. Horizontal and vertical indexes of a pixel represent



the two dimensions & and y and the sequence number of a frame represents
the time dimension t of the function f.

2.1 Regional Averages

A great deal of geographic data is collected and reported as an average
over a region in space and time. A list of examples includes:

e the weekly number of cases of a disease by city;
e the yearly total income by county;
e the monthly number of unemployed by state.

In each case one can imagine that the quantity of interest could be well-
modeled by a smoothly varying function of time and space. The reported
data is simply the average value of the function (with respect to some mea-
sure) over a region in space-time. For example, the monthly number of
unemployed by state is the integral over the state of the unemployment rate
(per unit population) for a month with respect to the measure of population
density.

The problem of modelling a smoothly varying function of space has been
considered by, for example, Tobler (1979). Tobler solves a discrete version of
the Dirichlet integral subject to the boundary condition that the function is
zero on the boundary of the region (or the condition that the derivative of
the function is zero on the boundary of the region). Other related work con-
cerning geographical interpolation is given in Tobler (1969), Tobler (1970),
and Tobler and Kennedy (1985).

2.2 Mumps Data

The disease mumps causes severe morbidity and other side effects, par-
ticularly with increasing age. Mumps is preventable. The public health
importance of the disease in the United States was recently highlighted by a
large outbreak which occurred in 1986-1987, primarily among unvaccinated
adolescents and young adults in states without requirements for mumps vac-
cination (see, e.g., Centers for Disease Control, 1989). Questions of public
health importance concerning mumps include:



e Should specific populations be targeted with vaccine?
e How effective are interventions in the face of an outbreak?

Analytical questions which could affect decisions of public health importance
include:

e Can annual or other periodicity be detected for mumps in the United
States?

e Can geographic spread of mumps be demonstrated?

Disease maps (we are producing a dynamic disease map) are an important
tool for answering such questions (see, e.g., Pyle (1979) or Cliff and Hagett
(1992).

The Centers for Disease Control in partnership with the Council of State
and Territorial Epidemiologists (CSTE) operates the National Notifiable Dis-
eases Surveillance System (NNDSS) to provide weekly provisional informa-
tion on the occurrence of diseases that are defined as "notifiable” by CSTE.
The NNDSS also provides revised weekly, monthly, and annual totals. Fur-
ther details concerning NNDSS can be found, for example, in Chorba et al.
(1989). The NNDSS data are based on reports by state epidemiologists,
who themselves receive reports from a variety of sources, such as individual
practitioners, hospitals, laboratories, and health departments. Reports are
received from all 50 States, Washington, D.C., New York City, and 5 United
States territories.

The raw data we consider here consist of the revised total number of cases
of mumps reported from each state for each month for the period 1968-1988.
Data are not available for all states for all months during the period. Reasons
a state may fail to report during a particular month include:

e increased workload of those who process disease surveillance reports,

e assumption that outbreak-related cases are known through other mech-
anisms,

e small numbers of cases may be combined with those for other reporting
periods.



Also, the various states joined the NNDSS at different points in time.

The total data set contains 10,342 records. In 33 of the records the
month is not specified; these records were removed from the file leaving
10,309 records. For comparison purposes, 48 states times 21 years times
12 months per year yields 12,096 possible state-month combinations. Thus
there are 1787 missing (or unidentified) observations, approximately 15% of
the possible combinations.

The reported counts were converted to reported incidence rates for each
state (cases per 100,000 population per month) by dividing by the estimated
population in units of 100,000 people. The state population estimates were
obtained by linearly interpolating (or extrapolating) on a monthly basis from
the 1970 and 1980 decennial census estimates of state population. Annual
state-level population estimates were not readily available to us in computer-
readable form. Given the qualitative nature of our maps we feel that using
the linearly interpolated estimates has little or no effect on the results.

3 Animation Techniques

We are interested in the estimation and display of a smoothly varying
scalar function f with a three dimensional argument (x,y,t) as described at
the beginning of Section 2.

The following features of an animation should be noted:

1) The time dimension is substantially different from the space dimen-
sions. For example, it would be very difficult to understand our anima-
tion if we had equated (x,t) in the data with (x,y) on the screen and
equated y in the data with ¢ on the screen.

2) The eye can not readily distinguish a single pixel from its neighbors.

3) Nonsmooth changes in time are more difficult to detect than similar
changes in space.

The first and third properties suggest that interpolation in space could
be done independently of interpolation in time.

The second property suggests that our computationally-intensive spatial
interpolation method could be used to interpolate to some subset of the
image pixels (preferably a regular grid) and the remaining pixels could be
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filled using simple bi-linear (see Section 4.3) interpolation (from this regular
grid). This would save computation time without degrading the percepted
smoothness of the animation.

In the next subsection we consider scaling the animated function (its
values and its arguments) to fit into the range of available colors, pixels, and
video frames. Then we consider temporal interpolation to animate the data
and then consider smoothing the raw data before we animate it.

3.1 Scaling

Once the function of interest f(z,y,t) is determined, an animation is like a
generalization of plotting to three dimensions. To produce an animation one
has to scale a four-dimensional object into the graphical device coordinates.
Plotting a function of a one dimensional argument only requires scaling of a
two-dimensional object (the values of a function and its argument) to fit on
the screen or paper.

A function of three dimensions has to be scaled to be shown on a device
with finite spatial and temporal resolution. We map the range of the function
values into 256 color values. The region where the function is shown is
mapped into the 512 x 512 pixels of our display and the time interval of
one or two minutes (there are 1800 video frames per minute). These values
are limitations of human perception and/or video equipment. According to
experiments (see Levkowitz and Herman, 1992) people can clearly distinguish
around 120 color values on the appropriately chosen color scale. The number
of distinct pixels on a television screen is limited by the bandwidth of the
display device screen imposing a range of possible values for two dimensions
z,y. We find that more than one or two minutes of technical video is often
boring to anyone other than a subject-matter specialist, limiting possible
values in the remaining dimension t.

Mumps incidence decreases dramatically during from 1968 to 1988. In
order to better use the color scale we made a nonlinear transformation of the
incidence rates before transforming them linearly into colors. The transfor-
mation we chose was to use the rank of each incidence rate in the whole data
set rather than the value. The resulting colors are then uniformly distributed
over the color scale. We tried using the data values and the logarithm of the
data values, but in both cases only hte large variations of incidence rates in
the beginning of the period (1968-1978) were detectable, leaving the later



period without much visible action. In the image processing literature such
a transformation of the pixel intensities is called “equalization” (see, for ex-
ample, Pavlidis, 1982). The actual color scale is displayed at the bottom of
the frame with the corresponding incidence rates given just above the colors.

3.2 Temporal Interpolation

The entire mumps data set consists of 252 months. NTSC video is dis-
played at the rate of 30 frames per second (NTSC is the television signal
that is used in the United States and Japan). After several experiments we
decided that displaying the data at the rate of 20 frames per month was a
reasonable compromise between the time required to look at the entire data
set and the apparent speed with which changes take place. Thus each month
is displayed for two-thirds of one second. If the recording were done so that
twenty identical frames were recorded and then the switch were made to
the next month’s data, the viewer would be distracted by the jumpiness of
the resulting images (see Section 5.1.1). Consequently, we chose to inter-
polate linearly between consecutive months. Precisely, the correctly colored
maps for two consecutive months are calculated and then 19 intermediate
maps are calculated by linear interpolation in the color scale. This results in
substantially smoother appearance.

We considered other types of temporal interpolation (sinusoidal, trape-
zoidal, and quadratic) but decided that linear interpolation was preferable.
Apparently, either we are sensitive to the maximum value of the derivative
of the interpolating function (linear interpolation minimizes this maximum
value) or we are sensitive to a non-zero second derivative of the interpolating
function (linear interpolation has a zero second derivative).

3.3 Smoothing Raw Data

Observed data usually contains a substantial amount of noise which, if
not removed, can produce a “jumpy” animation which, in turn, could hide
interesting features of the animated process.

In time series analysis data are frequently smoothed using running aver-
ages or running medians to reduce noise. Given a series of observations z;,



the value of the running median at time 7 is
Zixr = Median{z; : |j —t| < k},

where k is called the size of the running median. Our definition of running
median of size k is often referred to as “running median of 2k + 17, but the
latter terminology does not extend to the multidimensional case. We prefer
to use medians (as opposed to means) because means are not invariant under
the transformation to ranks that we used for the color scale.

Tobler and Kennedy (1985) used an interpolation from spatial averages
to fill in missing values. We use spatial (and space-time) medians to smooth
the data and to fill in missing values.

In the mumps data there are both time and space components, so we could
do running medians in time for every region, do moving medians in space for
every time moment, or do moving medians in space and time together. To
define moving medians in space we need to define adjacencies between the
locations of observations because the simple (total) ordering by time is no
longer present. In our case, regions A; (states) form a partition of A (the
continental US). We define two spatial regions to be adjacent (or 1-adjacent)
if they share a common border consisting of more than one point. If there
is a region to which they both are adjacent then we call them 2-adjacent.
Note that a pair of regions that are 1-adjacent are automatically 2-adjacent.
Similarly we can define k-adjacent regions. Given the values z; for regions A;
we define a moving median of size k at the region A; as 2, , = Median{z; : A;
is k-adjacent to A;}. The time dimension can be thought of as just another
space dimension and then we can apply the moving medians in space and
time simultaneously.

We successfully used those techniques to improve the perceived smooth-
ness of animations. We found that moving medians of size one (in space-time)
produce a substantial amount of smoothing (see Section 5.1.3).

4 Estimation from Spatial Averages

4.1 The Problem

The problem of interest is to estimate a function f(x,y,?) (incidence rates
of the mumps disease at some location and time moment (z,y,?) given sets
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{A;} and data {z;}. Henceforth we will denote a space-time location as
x = (z,y,t) to simplify the notation. The relationship between f and data
is given by following equation

G= [ FAG), j=1,.. N
XEA;

where A; C A C R® and ((x) is the population distribution.

One could assume that f(x) is a fixed but unknown function. The prob-
lem then would be simply one of interpolation. Alternatively, one could
assume that f(x) is random. Then one would look for the predictor f that
minimizes the mean square error (MSE),

A

MSE(f(x)) = E((f(x) = f(x))*).

The function f(x) has to be estimated over some set of x € A C R?, so
the integrated MSE

[ MSE(j(x))dx,

or maximal MSE

supxeaMSE(f(x))
could be of interest depending on the problem at hand.

Let f(-) be a zero mean stationary process and ¢;(x) = E(f(x) - z;), and
let C' = (¢;j) where ¢;; = E(z; - zj). Then the minimum MSE predictor for
f(x) would be )

f(x) = e(x)C 'z, (1)
where ¢(x) = (¢;(x) is a vector of length N, C~! is the inverse of the N x N
covariance matrix for the {z;}, and z = (z;) is the observation vector of length
N. When the assumption that f(-) is a zero mean process is unreasonable the
mean could be estimated taking global or local averages of the observations
Zi.

Equation 1 has some drawbacks. The assumption that f(-) is stationary
is probably unreasonable. Also, Equation 1 requires inversion of the matrix
C as well as knowledge of the covariance function of the process to obtain
¢i(x) and ¢;;. In the case of observations at a point (z; = f(x;)) there are
parametric and nonparametric ways to estimate the covariance function (see,
e.g., Cressie, 1991). When data are aggregate, as is in our case, it is still pos-
sible to estimate the covariance function (see Mockus, 1994). Unfortunately,
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covariance function estimation is difficult as is the method of Tobler (1979).
We considered alternative simpler solutions.

The estimation problem we are considering could be modified so that the
interpolation would be done given the values (instead of integrals) of f at
some points. This approach is described in next section.

4.2 Transforming the Problem

For the interpolation problem when data are values of the function at
some points there exist a wide range of fast and simple-to-implement algo-
rithms. A kernel estimator for f(x) given z; = f(x;) is

A K (x,x;)z;
J(x) = Z;:Z [XE(X,Xz) ’
where K(x,x;) is a kernel function. When data are aggregate
L= Ja, J(x)dG(x)
Z Ja, dG(x)
one could define an estimator by analogy
f(x) iz a4, K(x,%)dG(x;)
i fa, K(x,x)dG(xi)

To approximate the integrals f, K(x,x;)dG(x;) we took a sample of

points uniformly distributed within each state A;. The number of points
sampled in each state was taken proportional to the area of the state. We
assigned the value to those points to be equal to the incidence rate for the
particular state the points are in. In this way we take into account the differ-
ing areas and shapes of the states. This method cannot take account of the
distribution of population within a state because we have only one estimate
of the incidence rate for each state.

These sampled points are used to interpolate a function to every pixel
on the map. We used a weighted combination of the function values at the
sampled points to obtain the value at all pixels. The weight function K(x,x;)
was chosen to be exponential in the squared distance between the sampled
point x; and the pixel x where the function was being interpolated.

The method we used to estimate f(x) in the animations can be described
as follows:
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e Choose a set of points and a set of values for every A;, x;; € A;, z;;, t =

1.k

— We took the number of points £; in the region A; to be propor-
tional to the area of A;.

— The points x;; are distributed in A; so that they repel each other
and the boundary of A;. A point x;4 ; is sampled uniformly from
the set A; \ Ui_,r%, where ry is a disk with a center at x;;. The
radius of r; depends on the total number of points to be sampled
from A; and on the size of A;.

— The values of f at x;; are assumed constant for each A;, z;; = z;.

e Use the estimator

iy
USRS

K (%, Xi5) 25
7 K X, XZ])

1 e 2
with K(x,x;;) = e Mxo=xI",

e Choose the smoothing parameter A to provide an acceptable degree of
smoothness to the animation.

4.3 Two Levels of Interpolation

Estimation using exponential weights for each point as described in Sec-
tion 4.2 can be very time consuming. The frame buffer (the device that
generates the NTSC video signal) has more than 500x500 pixels. Assum-
ing an average of 10 points in each state where the value of the function is
assumed to be given, we have to perform approximately 10® distance and ex-
ponential weighting calculations for each frame. This is a substantial amount
of time even on a fast workstation given that we want to record 252x20 of
those frames.

Consequently the weighted estimation was performed only onto a regular
grid over the United States. We chose the grid size to be 35 points by 25
points. We then used a bi-linear interpolant from the four values at the
corners of each of the 34 times 24 rectangles of the regular grid to each pixel
within a particular rectangle. The weights for each pair (regular grid point,
sampled point) are computed only once and stored.
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5 Videotapes

The animations were produced one after another, improving the result
at each step. Despite those improvements the first steps are of interest by
themselves.

The simplest possible animation is to display the raw data: a constant
value of the incidence rates for each state during every month. The result is
difficult to understand due to sharp changes between adjacent states, abrupt
changes in time, and abundance of unreported cases. This animation creates
a desire for a smoother picture in space and in time.

A smoother looking picture can be produced by smoothing the raw data
and estimating missing values. In this case the smoothed data is displayed
as being constant across each state and interpolated between months. The
interpolation between months removes “jumps” in time. We used linear in-
terpolation between months as described in Section 3.2. Various approaches
are possible to smooth the data in space. From a practical point of view,
running medians in space and time (see Section 3.3) is a simple method that
also fills in the missing values. Although it is an improvement over the first
step this animation still has jumps at state boundaries.

The last step was to produce a smooth animation both in time and space.
This required use of techniques described in Section 4.2. The animation that
is smooth in time and space turned out to be visually appealing and easier
to understand.

A brief description of the equipment we used to produce those animations
can be found in Eddy and Mockus (1993). A copy of a VHS videotape in
NTSC format containing the displays generated to date is available from the
authors at cost. The tape contains about twenty minutes of video.

5.1 Nonsmooth in Space
5.1.1 Nonsmooth in Time

We have used the background color to indicate missing data. The states
which are missing seem to “disappear” into the background when there is
no data. An initial version of the videotape switched instantaneously from a
color to background when there was a missing observation and then back to a
color from background when there was data. The abruptness of this scheme
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1986 12

0.0 0.1 0.4 23 93.0

Figure 1: Raw Incidence Rates in December 1986

was sufficiently jarring that we modified the scheme to “fade” to background.
This is actually done by linear interpolation between the particular color and
the background color. One frame of this animation is displayed in Figure 1.

The time smoothing was performed as described in Section 3.2. Simple
linear interpolation in time was the first method we used. We tried other
interpolation methods but could not detect any improvement.

5.1.2 Filling in Missing Data

The number of states not reporting mumps cases increases in the later
part of the data. This distracts the viewer from the overall pattern of the
disease. We used methods described in Section 3.3 to fill in the missing
values. To indicate the fact that the value was not reported we used a dotted
fill pattern for the particular state. This way it was possible to show the
overall predicted pattern of the disease together with information showing
which part of the data was actually reported.

13



Figure 2: The locations of points used in smoothing

5.1.3 Smoothing in Missing Data

In an attempt to reveal the major patterns in the data we used moving
medians as described in Section 3.3 not only to fill in the missing values but
also to smooth the existing values. This resulted in large regions in space
and time having roughly the same color.

5.2 Smooth in Space and Time

The smoothest animation was produced using independent time and space
smoothing. The smoothing in space was done for every month. First we
estimated the intensity on a regular 35 x 25 grid of points using the algorithm
described in Section 4.2. The particular set of points x;; (using the notation
of Section 4.2) is shown in Figure 2.

To obtain estimates for the remaining pixels we used a simple bi-linear
interpolation described in Section 4.3. As in previous animations we chose to
interpolate linearly the 19 intermediate frames between the monthly smoothed
maps. Thus the smoothing in space and in time are independent of each
other. The single frame corresponding to December 1986 is displayed in
Figure 3.
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0.0 0.1 0.4 23 93.0

Figure 3: Smoothed Incidence Rates in December 1986

5.3 Detecting Disease Outbreaks

As an alternative to showing the incidence of the disease we considered
inspection of the residuals from a simple statistical model. This approach was
intended to emphasize outbreaks of the disease and mask normal patterns
such as seasonal variations and different reporting practices across the states.

In this video we considered the later period of the disease (1980-1988)
when the incidence rates have stabilized after the steep drop that was caused
by the introduction of vaccination programs at the end of 1960’s.

Let z;; be the logarithm of the reported incidence rates in state ¢ for
month j (we added 1 before taking the logarithm to avoid problems with
zero incidence rates). We used median polish (see, e.g., Siegel, 1983) to fit
additive state effects s; and time effects ¢;. The residuals

Nij = Zij — 8 — 1

for any particular state looked like a stationary time series except for one or
two peaks caused by larger outbreaks.

To emphasize the outbreaks we smoothed out the “small” noise leaving
only extreme peaks. We defined an 7;; to be unusual if it was in the upper
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Log of monthly incidence rates
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Month from Jan. 1968

Wisconsin

Log of monthly incidence rates
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Month from Jan. 1968

Figure 4: Log of the mumps monthly incidence rates versus months from

Jan. 1968 to December 1988

0.95 quantile of the residuals. We then applied running medians of size 3 in
time for every state to the residuals that were not considered unusual, i.e.
we chose

his = { Median(n;; : |7 — k| < 3) if n;; was not unusual
iy —

n;; otherwise.

The resulting animation identifies what one could define as an outbreak of
the disease without confusing the scene with the seasonal and between state
effects.

6 Discussion

Mumps in the US is a seasonal disease. The peak occurs in early spring,
while the lowest incidence rates can be observed in autumn. As most of the
cases are school age children, this can be in part explained by the school year.
Over a longer period the mumps disease had a high incidence rate before
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the vaccination programs started around 1970. By 1980 these vaccination
programs almost completely eradicated the disease, leaving only a few cases
per state per month. Some states ceased mandatory vaccination programs
at about that time and strong outbreaks of the disease occurred in 1986-
1987, primarily among unvaccinated adolescents and young adults in those
states. These statements are clearly supported by the graphs in Figure 4 of
the logarithm of the incidence rates in California and Wisconsin. We can see
seasonal periodicity (high in spring and low in autumn) and an outbreak in
Wisconsin in the second half of eighties.

Annual periodicity in the incidence rate for mumps can be observed in
both the raw data videos and the smoothed versions. The periodic effect is
particularly striking in the early years of the data set, before the widespread
use of the mumps vaccine reduced the typical monthly incidence rate below .1
(cases per 100,000 people). However, the effect can be discerned throughout
the data set, especially in the smoothed version.

The geographic spread of mumps cannot be easily discerned in the raw
data; however, repeated viewing eventually allows one to make such an inter-
pretation. The effect is probably most noticeable in the winter of 1987-1988
in the states surrounding Illinois. In the smoothed data the geographic spread
of the disease is readily apparent. This is particularly clearly visible during
the late winter of 1986-87 when the disease spreads from Illinois to Arkansas
and Tennessee and in the subsequent winter when the disease spreads to all
the neighboring states.
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