
Inverse Conway’s law:
How product structure

shapes organization
structure

ZHOU, Minghui, zhmh@sei.pku.edu.cn
Peking University

MOCKUS, Audris, audris@avaya.com
WEISS, David, weiss@avaya.com

Avaya Research Labs
2009.5.19

mailto:zhmh@sei.pku.edu.cn
mailto:audris@avaya.com
mailto:weiss@avaya.com

 2/14

Offshoring
story

 Backgroun
d

 Transfer
 Productivit

y

 3/14

Offshoring indications
Developers learn over time

 It took time to master the legacy system

The offshoring happened with little
help from original teams
 The main resource for learning is the product itself

Different projects showed different
practices
 Products come from different acquired companies,

and have different culture embedded in them
 Different learning practices show different culture

influences

 4/14

Inverse Conway’s law
 Product structure shapes communication structure

through learning
 An existing system shapes the communications of people who

maintain or enhance it
 Learning is to perform regular project tasks (practice)
 Tasks are defined by product structure
 Centrality of developers are defined by tasks
 Communications are defined by centrality of developers

task1 task11

…
task22

task2

…

…

…

…

…

 5/14

 Methodology
-Qualitative and Quantitative

studyQualitative study
 Designed interview questions, focusing on developers’

involvement:
• what to learn when joining, what help was available,

what resources they could refer to, how they resolve
problems, how they get assignments, who
communicated most often, …

 Sampled people for interview: 3 developers per project
 Explained our purpose before interview
 Conducted the interview through telephone conference

Quantitative study
 Access ClearCase and SCCS, Avaya post…
 Filter data
 Every observation is a task-related change, and every

change affects a module and is related to a Modification
Request (MR)

 6/14

Developers learn through performing
tasks

A-C: green

D: red

 Learning is not to achieve knowledge structure, but the
participation of practice in the community (LPP approach [3])
 Developers learn through performing regular project tasks

 Regression model: log(productivity+1) ~ ID + tenure +
log(practice+1)
 Response: productivity (number of changes per staff-month)

 Predictors: Learning experience
• tenure, i.e., the months from hiring day
• practice, i.e., the changes the developer has made till that month

 All coefficients were significant with R^2 around 0.32

 7/14

Product structure defines
Tasks

 Product structure
 Modules

• Product package/subsystem
• Functionality

 Activities: types of development activity
• E.g, bug fixing, new feature development. ..

 Tasks are assigned based on product structure
 Work on what module
 Work through what activity

 Centrality of tasks determines centrality of
developers
 Centrality of a task

• Customer dimension
• Long-term impact dimension
• System-wide impact dimension

 8/14

Seniors and juniors do
different tasks

 Different roles do different tasks, and have
different communications
 Manager, Module owner (close to internals of the product),

Tier 4 (close to customer) do different tasks

 Seniors and juniors do different tasks, and
have different communications

Centrality/
Product
structure

Customer dimension Long-term impact dimension System-wide impact dimension

Module
structure

“I have worked in almost all
areas of C, and am now a
technical leader, and
responsible for telephony
modules” (senior)

“The module changes are
reviewed by the experts
(seniors) in case they affect
the design”

“When I joined I had web client”;
“Integration test is given (to novices)”;
“Adding printouts to logs” (novice)
“I work on voice/XML (browser). I have
worked on many modules, because the
browser interacts with many modules”
(senior)

Activity
structure

“I am the contact person for
sales demo and data base
administration tasks” (senior)

“We would be happy if we get
new, interesting features to
develop” (offshore)

“Some simple MRs are given” (to
novices)

 9/14

Developers become more central
through practice

 Regression model : log(# of logins+1) ~ ID +
log(practice+1)
 Response: task centrality (how many people have made changes for

that module)
 Predictors: learning experience

• tenure, i.e., the days from hiring day to the day change was
made

• practice, i.e., the changes the developer has made till that
change

 All coefficients were significant with R^2 around 0.59

 Other metrics of task centrality
 How many changes have been made for that module
 How many releases are related to that MR
 If the MR was reported by a customer
 A non-customer bug fix or new development

Estimate Std. Error t value Pr(> |t|)

(Intercept) 5.63 0.23 24.14 0.00

log(practice+1) 0.05 0.01 9.13 0.00

Developers = 136, Observations=18192
R2= 0.59

When developers practice/learn more, they
appear to do more central tasks, in turn, they play
more important roles, and have more central
communications

 10/14

Best practice?
 Can there be best software practices?

 The projects differed in ways they provided resources, and ways that
developers achieved their skills and implemented common software tasks

• A: “If we are stuck on a problem, we check out the code to see who
changed the code along with the descriptions.” “We look through
Compas for design documents to understand the component
architecture.” “If the person is still in the company we ask if they can
provide any insights. If not we look at every relevant document in
Compass.” “If we see more issues we go through QQ to look for similar
issues.” “We make guesses on keywords to search.”

• B: “In order to locate the bug, we go through all the files; and go
through the code to figure out how it works.”

• C: “The first thing is to make a call. I made a call, and dropped it, and
looked at traces and logs, to understand what my module did. I
gradually added more complexity to scenarios. So I tried to follow code
flow.”

 Such differences are probably caused by the different origins of each project

 It remains to be seen if these practices have been optimized
for a particular project or could be improved by borrowing
best practices from other projects

 11/14

Cultural firewall?
Can an organization with a legacy

product adapt to changing times?
 The developer practices reproduce in a completely

new team through individuals’ learning, and
individuals learn from legacy artifacts which are
imbued with the old culture

• A: “The central repository is on a restricted share point”; “Code is on ClearCase, including the traces showing who
changed the code along with the descriptions”; “Compass is convenient to search for design documents to
understand the component architecture”;“The defect database is used to look for similar issues”.

• B: “Documents from US team told how the code and builds were structured, which are the 2rd most important for
knowledge transfer”; “Calls and mail support from US team are the 3rd most important for understanding”; “If
had questions I first went to the Pune staff (50-70%), and if needed I sent queries to the US team(1%)”

• C: “There is a repository where all (customer) problems are reported; “On ClearCase we check what was changed
and who changed it and what files were included in the change”; “Logs tell which problem area to look at. Each
log statement has the module name of the originator”.

 The software organizations maintaining legacy
products are less likely to be able to adjust to
changing competitive business environment

Organizations might need to create a
cultural firewall between parts of the
organization engaged in new and
legacy products

 12/14

What’s the communication
structure?

 Roles/individuals and communications?
 What are the roles?

• Communication is defined by multiple organization units
represented by roles, preferably roles that are far apart

 What are the communications?
• The developers talk synchronously: f2f, phone, im
• Also asynchronously via email (you know who you are

talking with)
• Also via artifacts: MRs, documents, code changes (you

don’t know who you are talking with)

 Is communication structure static or dynamic?
 For an individual, her communications change dynamically

when she change her roles, but is it static or dynamic for
the whole project CS? Or if defining communication
structure from roles, is it static?

 13/14

Product as communication

The entire product and supporting systems
act as communications between past and
present
 Opening an MR you don't know who will be assigned to

solve it, editing code, you don't know who will be the next
to read/change it

 Problem tracking systems are even more direct
representations of past communications (frozen
communications)

Conway's law (and inverse) are just truism
 Forward: Product structure embeds the communications

among people writing/modifying it
 Inverse: Product affects communications by being the

message

 14/14

References
 [1] Conway, M.E, “How Do Committees Invent?” Datamation, Vol.14, No. 4, Apr. 1968, pp. 28-31.
 [2] J. Van Maanen and E. Schein, “Towards a theory of organizational socialization”, In B. Staw, editor, Research

in organizational behavior, volume 1, pp. 209–264. JAI Press, Greenwich, CT, 1979.
 [3] Lave, J., Wenger, E. “Situated Learning. Legitimate Peripheral Participation”, Cambridge University Press.

Cambridge. 1991.
 [4] Weinberg, Gerald, “The Psychology of Computer Programming”, Van Nostrand Reinhold Co. New York, NY,

USA. 1988.
 [5] Yunwen Ye, Kouichi Kishida, “Toward an understanding of the motivation Open Source Software developers”,

Proceedings of the 25th International Conference on Software Engineering, Portland, Oregon, May 03-10, 2003, pp
.

 [6] Mostrm, J. E., Boustedt, J., Eckerdal, A., McCartney, R., Sanders, K., Thomas, L., and Zander, C. 2008.
“Concrete examples of abstraction as manifested in students' transformative experiences”. In Proceeding of the
Fourth international Workshop on Computing Education Research (Sydney, Australia, September 06 - 07, 2008).
ICER '08. ACM, New York, NY, 125-136.

 [7] A. Mockus and D. Weiss. “Interval quality: Relating customer-perceived quality to process quality”. In 2008
International Conference on Software Engineering, pages 733–740, Leipzig, Germany, May 10–18 2008. ACM Press.

 [8] Audris Mockus. ”Succession: Measuring Transfer of Code and Developer Productivity”. In 2009 International
Conference on Software Engineering, to appear.

 [9] A. Mockus. Software support tools and experimental work. In V. Basili and et al, editors, Empirical Software
Engineering Issues: Critical Assessments and Future Directions, volume LNCS 4336, pages 91–99. Springer, 2007.

 [10] R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data," IEEE Transactions on
Software Engineering, vol. SE-10, no.6, November 1984, pp. 728-738.

 [11] Ikujiro Nonaka, “A dynamic theory of organizational knowledge creation”, Organization Science 5 (1), 1994:
14-37.

 [12] G. von Krogh, S. Spaeth, and K. R. Lakhani, "Community, Joining, and Specialization in Open Source Software
Innovation: A Case Study", Research Policy 32(7), July 2003, pp. 1217-1241.

 [13] Ritter, F. E., & Schooler, L. J. “The learning curve”. In
International Encyclopedia of the Social and Behavioral Sciences (2002), 8602-8605. Amsterdam: Pergamon

 [14] Andrew Begel and Beth Simon. Novice Software Developers, All Over Again. In the International Computing
Education Research Workshop, September 2008. Sydney, Australia.

 [15] A. Mockus and D. M. Weiss. Globalization by chunking: a quantitative approach. IEEE Software, 18(2):30–37,
March 2001.

 [16] Cataldo, M., Herbsleb, J.D., Carley, K. “Socio-Technical Congruence: A Framework for Assessing the Impact of
Technical and Work Dependencies on Software Development Productivity”, 2nd Symposium of Empirical Software
Engineering and Measurement, Kaiserslautern, Germany, 2008.

 [17] AJ Ko, R DeLine, G Venolia, "Information Needs in Collocated Software Development Teams", 29th
International Conference on Software Engineering, 2007. ICSE 2007, 20-26 May 2007, pp.344-353

 [18] Perry, D. E., N. A. Staudenmayer, and L. G. Votta. People, Organizations, and Process Improvement. IEEE
Software. 11, 4, 1994, 36-45.

 [19] Herbsleb, J.D. & Mockus, A. “Formulation and Preliminary Test of an Empirical Theory of Coordination in
Software Engineering”, In proceedings, ACM Symposium on the Foundations of Software Engineering (FSE),
Helsinki, Finland, 2003, pp. 112-121.

http://ritter.ist.psu.edu/papers/ritterS01.pdf
http://en.wikipedia.org/wiki/International_Encyclopedia_of_the_Social_and_Behavioral_Sciences

