
Measuring Technology Effects on Software Change Cost

D. L. Atkins, A. Mockus, and H. P. Siy

May 11, 2000

Abstract

We describe a methodology for precise quantitative measure-
ment of technology impact on software change effort. The
methodology employs measures of small software changes
to determine the effect of technology. We illustrate this ap-
proach in a detailed case study on the impact of using two
particular technologies–a version-sensitive source code ed-
itor and a domain engineered application environment–in a
telecommunications product. In both cases the change effort
was reduced. The methodology can precisely measure cost
savings in change effort and is simple and inexpensive since
it relies on information automatically collected by version
control systems.

1 Introduction

Software engineering productivity is notorious for being dif-
ficult to improve [6]. New technologies are constantly being
introduced in the hopes of increasing productivity by mak-
ing software easier to develop. While they have the potential
greatly to improve the quality and maintainability of soft-
ware, deploying and maintaining a new technology in a large
organization can be an expensive proposition. We explore
how to quantify the effects of existing software technologies
in ongoing large-scale software projects, presenting a simple
methodology that correlates technology usage with effort es-
timates based on analysis of the change history of a software
project.

Quantifying the impact of a technology on software devel-
opment is particularly important in making a case for trans-
ferring new technology to the mainstream development pro-
cess. Rogers [17] cites observability of impact as a key factor
in successful technology transfer. Observability usually im-
plies that the impact of the new technology can be measured
in some way. Most of the time, the usefulness of a new tech-
nology is demonstrated through best subjective judgment.

This may not be persuasive enough to convince managers
and developers to try the new technology.

The main assumption of our work is that a major effect
of a software technology is to make it easier or simpler for
a developer to make certain modifications to a software en-
tity. The focus of our methodology is the analysis of changes
to the software. First, we obtain a number of change mea-
sures, such as size, purpose, developer identity, and tech-
nology usage, from the change history of the source code.
Then we quantify the impact of these measures on effort it
takes to complete a change using the algorithm introduced
in [11]. Finally, we adjust for the possible differences be-
tween changes done with and without the technology. We
make this adjustment based on the value added by an aver-
age change. The value may be expressed in terms of new
features introduced by the set of changes or it might reflect
some other enhancement of software.

As we will see, this process is largely automatic, inexpen-
sive, non-intrusive, and applicable to most software projects
using version control systems. Furthermore, it can be applied
to an entire software project in its actual setting as we do here
to measure the effects of a version-sensitive source code ed-
itor and of a domain engineered application environment on
software change effort. Despite fairly simple general fea-
tures, there are a number of differences between the ways
the methodology is applied to estimate the effect of various
technologies. The goal of this paper is to highlight and sum-
marize these differences to make the methodology easier to
use in practice.

We start by briefly describing the software project under
study, software changes, and data sources in Section 2. Sec-
tion 3 describes the two technologies under consideration.
Section 4 describe step-by-step application of our methodol-
ogy. Finally we conclude with a relevant work section and a
summary.

1



To appear in Bell Labs Technical Journal. May, 2000 2

2 Background

The case study here revolves around a large telephone
switching software system developed over two decades. Lu-
cent Technologies’ 5ESSTMswitch is used to connect local
and long distance calls involving voice, data and video com-
munications. The 5ESS source code is organized into sub-
systems with each subsystem further subdivided into a set of
modules. Each module contains a number of source code
files. The change history of the files is maintained using
the Extended Change Management System (ECMS) [12], for
initiating and tracking changes, and the Source Code Control
System (SCCS) [16], for managing different versions of the
files.

We present a simplified description of the data collected
by SCCS and ECMS that are relevant to our study. ECMS,
like most version control systems, operates over a set of
source code files. Anatomic change, ordelta, to the pro-
gram text consists of the lines that were deleted and those
that were added in order to make the change. Deltas are usu-
ally computed by a file differencing algorithm (such as Unix
diff), invoked by SCCS, which compares an older version of
a file with the current version.

ECMS records the following attributes for each change:
the file with which it is associated; the date and time the
change was “checked in”; and the name and login of the
developer who made it. Additionally, the SCCS database
records each delta as a tuple including the actual source code
that was changed (lines deleted and lines added), login of the
developer, MR number (see below), and the date and time of
change.

In order to make a change to a software system, a devel-
oper may have to modify many files. ECMS groups atomic
changes to the source code recorded by SCCS (over poten-
tially many files) into logical changes referred to as Mainte-
nance Requests (MRs). There is one developer per MR. An
MR may have an English language abstract associated with
it, provided by the developer, describing the purpose of the
change. The open time of the MR is recorded in ECMS. We
use time of the last delta of an MR as the MR close time.
We use keyword spotting of the MR abstract to infer the pur-
pose of a change [14]. In the analysis below, we distinguish
defect fixes from other types of maintenance activities based
on the presence of appropriate words in the one line English
text MR abstract recorded by ECMS.

We also obtained a complete list of identifiers of MRs that

were done using domain engineered application environment
and/or using version sensitive editor. Thus, for each MR, we
were able to obtain the following information,

� who made the change (developer login)

� size of the change (number of lines added and deleted)

� number of deltas

� duration (dates of first and last deltas)

� purpose of change

� number of files touched

� whether it was done using the technology under consid-
eration.

3 Applications

In this section we describe two technologies we evaluate.
The first one represents a source code editor that is designed
to show a desired version of the source code. The second
example describes a domain engineered application environ-
ment including a special language and a GUI based program-
ming interface.

3.1 VE: A Version-sensitive Editor

The Version Editor (VE) is used by 5ESS developers to sim-
plify the view of source code as they make changes. The
software project for these programmers requires the concur-
rent development and maintenance of many sequential ver-
sions as well as two main variants for domestic and interna-
tional configurations of the product. The 5ESS source code
may be common to more than two dozen distinct releases of
the code, which may be deployed products in maintenance
mode, or new product versions under active development.

As described in [2], the software releases form a complex
version hierarchy with the often conflicting project manage-
ment goals of isolating deployed releases from current de-
velopment changes yet maximizing commonality to promote
the automatic flow of software fixes to future releases. Since
the industrial source code management technology of the
early 1980’s did not have good support for branching and
merging, source code was kept common among many re-
leases with release specific differences delineated by a spe-
cial embedded #version directive. This directive is similar to



To appear in Bell Labs Technical Journal. May, 2000 3

...
routing = GetRoute())

#version (4A)
dest = GetDest(routing);
if (dest.port == 0)

return(ConnectLocal(routing));
#endversion (4A)

Connect(routing);
...

...
routing = GetRoute())

#version (4A)
dest = GetDest(routing);

#version (! 5A)
if (dest.port == 0)

#endversion (!5A)
#version (5A)

if (dest.port == 0 jj dest.module == 0)
#endversion (5A)

return(ConnectLocal(routing));
#endversion (4A)

Connect(routing);
...

Figure 1: Before and after a Release5A change. Emboldened lines are the code added by the programmer.

a C preprocessor #if where a symbol (corresponding to the
release) is used for control and the symbol may be negated.

This system permits a single source file to be extracted to
produce a different version for each software release. Soft-
ware development environment tools verify the consistent
use of these constructs according to a release hierarchy main-
tained by the system and perform the extraction of the source
code for building each software release. For example, the
first frame in Figure 1 shows a source file where three lines
of code are specific to the 4A release. The system guarantees
that these lines will not appear in earlier releases but will ap-
pear in later releases. Also, the lines will not appear in iso-
lated releases (the domestic and international configurations
are all isolated from each other).

A developer adding new code must target the change for a
specific release and then bracket it by the appropriate #ver-
sion constructs. When existing code is changed, it must be
logically deleted with a #version construct using the negation
of the target release. Figure 1 shows how these constructs are
used to change the expression in anif-then statement for Re-
lease 5A. The originalif-then statement was code inserted
for Release 4A.

This simple example shows how even a one line code
change requires the developer to add five lines to the file
(four control lines and the changed code line). In addition
to this extra overhead for a logical one line code change,
the version control lines make the source file more difficult
to read and understand. In the project being studied there
are several dozen distinct releases and some core source files

may contain #version directives for most of these releases.
In worst case files, only 10% of the lines of the file are the
extractable source code for a release, with 50% of the lines
being #version/#endversion lines and the other 40% being
source that extracts for other releases.

The version-sensitive editor VE [8, 15, 3] was made avail-
able to make this situation more manageable for the devel-
oper. This tool allows the developer to edit in a view that
shows only the code that will be extracted for the release
being changed and performs the automatic insertion of any
necessary control lines.

The developer’s view is of normal editing in the extracted
code; VE manages the changes to the #version constructs
according to the described constraints. Figure 2 shows the
view presented by VE for the file from Figure 1. The devel-
oper only has to use standardvi or emacs editing commands,
and VE inserts the required #version directives (behind the
scenes).

The use of VE by developers is entirely optional. The
usage of VE may be detected, because VE leaves a signa-
ture on all of the #version/#endversion control lines that it
generates. (See [2] for more details.) Thus we can distin-
guish when VE was used to make a change involving #ver-
sion lines from when the change was made using an ordinary
editor. Figure 3 shows the history of VE usage in the project,
which consists of approximately 600,000 MRs. The three
lines show the percentage of MRs that were done with VE
(V: MRs such that all deltas of the MR contained #version
lines with the VE signature), without VE (H: MRs such that



To appear in Bell Labs Technical Journal. May, 2000 4

routing = GetRoute(routing))
dest = GetDest(routing);
if (dest.port == 0 jj dest.module == 0)

return(ConnectLocal(routing));
Connect(routing);

MR 12467 by dla,97/9/21,assigned [Local routing]
Versioning: 5A inside 4A
”route.c” [modified] line 67 of 241

Figure 2: Release 5A view in VE with change in bold

some delta of the MR contained a #version line without the
VE signature), and without #version lines (N: MRs such that
no delta in the MR contained a #version line). The usage of
VE increased dramatically over time.

Figure 3 shows the history of VE usage in the considered
project, which consists of approximately 600,000 MRs. The
three lines show the percentage of MRs that were done with
VE (V: MRs such that all deltas of the MR contained #ver-
sion lines with the VE signature), without VE (H: MRs such
that some delta of the MR contained a #version line without
the VE signature), and without #version lines (N: MRs such
that no delta in the MR contained a #version line). The usage
of VE increased dramatically over time.

V V V
V

V
V

V V V
V V V

V V VH H

H
H

H
H

H
H H H H H H H

H

N N

N
N

N N
N N N

N
N

N N N N

Years

P
re

ce
nt

ag
es

 o
f C

ha
ng

es

1986 1990 1994 1998

0.
0

0.
2

0.
4

0.
6

V VE
H HAND 
N NONE 

Figure 3: VE usage over time.

3.2 Domain Engineering

Traditional software engineering deals with the design and
development of individual software products. In practice, an
organization often develops a set of similar products, called
a family or product line. Traditional methods of design and
development don’t provide formalisms or methods for taking
advantage of these similarities. As a result the developers
practice some informal means of reusing designs, code and
other artifacts, massaging the reused artifact to fit into new
requirements. This can lead to software that is fragile and
hard to maintain because the reused components were not
meant for reuse.

Domain Engineering (DE) [19, 7, 9] approaches this prob-
lem by defining and facilitating the development of software
product lines rather than individual software products. This
is accomplished by considering all of the products together
as one set, analyzing their characteristics, and building an
application engineering environment to support their pro-
duction. In doing so, development of individual products
(henceforth called Application Engineering) can be done
rapidly at the cost of some significant up-front investment
in analyzing the domain and creating the environment.

The process is summarized in Figure 4. In this figure, DE
is further divided into domain analysis and domain imple-
mentation and integration. Domain analysis identifies the
commonalities among members of the product line as well as
the possible ways in which they may vary. Usually, several
domain experts assist in this activity. Also, the application
engineering environment is designed and built. This usu-
ally involves creation of a domain-specific language as well
as a graphical user interface front end as well as a source
code generator back end. Domain implementation and inte-
gration deploys the DE-based process, making necessary ad-
justments to product construction tools (makefiles, version
control systems, etc.) and to the overall development pro-
cess.

DE proponents believe that practitioners can improve the
productivity of application engineering by a factor of be-
tween two and ten, although there has been no quantitative
empirical support for such claims.

Several teams have used the DE-based process to reengi-
neer specific domain areas within the 5ESS software [1]. We
conducted a study to evaluate the impact of the AIM project,
a DE effort to reengineer the software and the process for
developing the multiplicity of screen interfaces to the 5ESS
switch database.



To appear in Bell Labs Technical Journal. May, 2000 5

Domain  Engineering

Application Engineering
   Environment

Application Engineering

Applications

Create

Create

Use

Feedback

a. Domain Analysis
b. Domain Implementation and Integration

Figure 4: The Domain Engineering-based development pro-
cess is an iterative process of conducting Domain Engineer-
ing and Application Engineering.

The problem faced by the screen developers was that most
clients who purchased 5ESS required customization of their
screen interfaces. In the old process, screens were cus-
tomized by inserting#ifdef-like compiler directives into
existing screen specification files. Over time, the specifica-
tion files have become difficult to maintain and modify.

The AIM project used DE to identify commonalities
and variabilities in different clients’ interface requirements.
These results provided input to the development of a GUI
tool for assisting in the design of and keeping track of the
customized screens. Information gathered through the GUI
was saved in files whose format was specified by a domain-
specific language. During the product build process, a code
generator would then take these files and generate the screen
specification files.

More details on the AIM study is published in an earlier
paper [18]. In some sense, the problem here is not unlike the
problem addressed by VE which facilitates the maintainance
of multiple versions of code. However, the creators of AIM
undertook a higher level, domain-specific solution in an at-
tempt to achieve even higher productivity.

4 Methodology

We outline here a general framework for analyzing the im-
pact of a software technology on software development ef-
fort. The main assumption of the framework is that if the

technology affects the development effort, the developers us-
ing it would be able to perform more difficult changes per
unit time.

The estimation is done at an individual change (MR) level
using algorithm introduced in [11]. The algorithm uses
change measures, such as the person doing the change and
change size and purpose, to quantify their contribution to the
change effort. To assess the impact of the technology we
include technology usage among other predictors of change
effort and use the algorithm to quantify its impact. For cer-
tain technologies, such as VE, this step is sufficient, because
the technology does not modify the definition of the change
itself. The VE does not appear to modify the definition of
the change because the same development process is used
and the same parts of the system are changed with and with-
out the tool.

The AIM case is different in that the changes are done
not by editing the source code, but by drawing graphs in a
GUI environment. This suggests that the change size may
not affect effort in the same way for AIM and for non-AIM
changes. It can be easily addressed by omitting predictors
that are not comparable across technology usage. However,
some technologies might affect the definition of the change
in some more fundamental ways. To deal with this issue
we need to quantify the ratio of value added by an average
change that uses and that does not use the technology and
adjust the effort savings correspondingly. There are several
ways to assign value to software changes, the most obvious
being the amount of or the revenue from the new functional-
ity introduced by the change.

The analysis framework consists of five main steps.

1. Obtain measures of changes. Identify the changes made
to the software entity of interest and whether or not the
technology was used.

2. Select a subset of these measures to predict the effort to
make a change. The minimal subset typically includes
the identity of a developer, whether or not the technol-
ogy was used, and the size and purpose of the change.

3. Check for collinearity among predictors. In particu-
lar, select subset of developers who have implemented
a substantial number of changes with and without the
technology. Since the developer factor often has the
largest effect on change effort, a balanced group of de-
velopers reduces variances of other estimates. More im-
portantly, it makes results insensitive to potential corre-



To appear in Bell Labs Technical Journal. May, 2000 6

lation between use of technology and overall productiv-
ity of individual programmer.

4. Fit and validate a set of candidate models. The models
that explain more variation in the data and have fewer
parameters are preferred. The fitted models could be
used to test the significance of the effect of technology
and/or to predict effort savings.

5. Obtain and compare the average value added by a
change that utilize the technology and a change that
does not. Use this factor to adjust for the fact that the
technology might affect the value added by an average
change.

The following sections explain each step in detail.

4.1 Change Measures and Technology Use

The basic characteristic measures of software changes in-
clude: identity of the person performing the change; the files,
modules, and actual lines of code involved in the change;
when the change was made; the size of the change measured
both by the number of lines added or changed, the number
of deltas, and the number of files touched; and the purpose
of the change including whether the purpose of the change
was to fix a defect or to add new functionality. Many change
management systems record data from which such measures
can be collected using software described in [13].

The information on files modules and lines changed is usu-
ally sufficient to determine if the software entity of interest
was touched by the change. The determination of technol-
ogy involvement in the change might be more complicated.
We first discuss how to determine if the technology was used
and then if it was not used.

In real life situations developers work on several projects
over the course of a year and it is important to identify which
changes they performed using the technology of interest.
There may be several ways to identify these changes. In our
VE example the tool left a trace in the SCCS files. In the
AIM example the domain engineered features were imple-
mented in a specific set of code modules (we refer to them as
AIM paths). In other cases we considered the technologies
involved use of a new programming language. To identify if
technology was used it was sufficient to determine the lan-
guage used in the changed file. In yet another case, a new
library was created to facilitate code reuse. To identify rele-
vant changes in that case, we look at the function calls used

in the modified code to determine if these calls involve the
API of the new library.

Finally, to perform the comparison, we need to identify
changes to a software entity that were done without to the
use of technology. In case of VE the information was avail-
able directly from SCCS except for a subset of changes that
had no #version lines. Consequently we had three types of
MRs: changes done using VE, changes done without VE,
and changes without #version lines. In the AIM example,
the source code to the previously used screen specification
files had a specific set of directory paths. We refer to those
paths as pre-AIM paths. Based on AIM and pre-AIM paths
sets of paths we classified all AIM MRs into three classes:
MRs that touched at least one file in the AIM path, MRs that
do not touch files in the AIM path, but touch at least one file
in the pre-AIM path, and MRs that do not touch files in the
AIM or pre-AIM paths. In both cases there are three cate-
gories of changes that we label:

TECH — MRs done on the software entity that involve
use of technology;

no-TECH — MRs done on the software entity not in-
volving the use of technology;

other — MRs done on other software entities or MRs
where the use of technology is uncertain.

4.2 Variable Selection

First among variables that we recommend always including
in the model is a developer effect. Other studies have found
substantial variation in developer productivity [10]. Even
when we have not found significant differences and even
though we do not believe that estimated developer coeffi-
cients constitute a reliable method of rating developers, we
have left developer coefficients in the model. The interpreta-
tion of estimated developer effects is problematic. Not only
could differences appear because of differing developer abil-
ities, but the seemingly less productive developer could have
more extensive duties outside of writing code.

It was found [11, 18, 2] that the purpose of the change (as
estimated using the techniques of [14]) also has a strong ef-
fect on the effort required to make a change. In these studies,
changes that fix defects are more difficult than other compa-
rably sized changes.

Naturally, the size of a change may have a strong effect
on the effort required to implement it. We have chosen the



To appear in Bell Labs Technical Journal. May, 2000 7

number of lines added, the number of files touched, and the
number of deltas that were part of the MR as measures of the
size of an MR. It is important to note that in the AIM case,
the changes involving technology were done using a special
GUI environment instead of editing the source code in in-
dividual files. This suggests that the size of AIM changes
might have a different effect on effort than the size of other
changes. One suggestion of that is the fact that the AIM
changes tend to be larger [18]. This potential problem lead
us to excluded the size predictors from some of the AIM ef-
fort models.

Finally, we include the variables of interest that concern
the use of technology. As we described above, that indicator
has three levels: technology was used, technology was not
used, and the use was uncertain or the change was done on a
different software entity.

4.3 Collinearity and Developer Selection

Statistical regression models typically require that the pre-
dictors used should not be collinear, that is, they should be
indpendent of each other. All change size measures tend to
be strongly correlated. Here we chose to use only the num-
ber of deltas as our change size predictor. The number of
deltas is correlated both with the number of files touched (for
each file touched there must be at least one delta) and with
the number of lines added (developers are typically unable to
add large pieces of code within a day and they usually check
in the code each day, resulting in multiple deltas for changes
with many lines). Consequently, the number of deltas is a
good overall predictor of change size.

Since the developer identity is the largest source of vari-
ability in software development (see, for example, [4, 10]),
we first select a subset of developers that had a substantial
number of MRs both with and without using technology so
that the results would not be biased by the developer effects.
If we had some developers that made changes exclusively
with the aid of technology, the model could not distinguish
between their productivity and the technology effect.

To select developers of similar experience and ability, we
chose developers that had completed between 150 and 1000
MRs on the considered product in their careers. We chose
only developers who completed at least 40 VE MRs for the
VE analysis and at least 15 AIM MRs for the domain engi-
neering analysis. The resulting subset contained nine devel-
opers in the VE case and ten developers in the AIM case.

4.4 Models and Interpretation

In the fourth step we are ready to fit the models and interpret
the results. The models are fit and the significance values for
the predictors are calculated as described in [11]. The de-
cisions made in previous steps suggested two models. The
first model assumes that the change size properties (number
of deltas) have the same effect on developer effort whether
or not the technology is used. There is little basis to doubt
the assumption in the case of VE, since the same source code
files are changed with and without the VE and the additional
editing features provided by the VE do not support or in-
hibit proliferation of deltas. In the AIM case, the changes
are made through GUI interactions rather than by directly
editing the source code files. Also, the underlying language
changed. Consequently, it is important to exclude the as-
sumption that the change size influences the effort in the
same way. We address that by fitting the second model with-
out any change size predictors.

The models are:

E(e�ort) = #delta� � �Fix � 
TECH � 
no�TECH

�
Y
i

�Developer
i

E(e�ort) = �Fix � 
TECH � 
no�TECH �
Y
i

�Developer
i
;

where in the model formula we use�Fix as a shorthand for
exp (I(is a defect fix) log�Fix), whereI(is a defect fix) is 1
if the MR is a defect fix and 0 otherwise. The same abbre-
viation is used for
 and for �. The basis for comparison
was set by letting�NotFix = 
other = 1. The estimated
coefficients with p-values and 95% confidence intervals are
calculated using a jackknife method (for details see [11]) and
are given in Table 1. The coefficients reflect how a particu-
lar factor multiplies the change effort in comparison with the
base factors�NotFix and
other which are assumed to be 1
for reference purposes.

The estimates of technology effects in Table 1 are very
similar across models. However, the first model is a more
precise description of the VE case, while the second model
is preferable for the AIM case (because the change size is
likely to have a different influence on effort in the AIM en-
vironment, while this is not true for the VE case).

A large difference exists between the relative impact of
each technology. Not using VE increases average MR ef-

fort about 40%
�

no�TECH�
TECH


TECH
� 0:4

�
and using AIM

decreases that effort three to four times (
no�TECH

TECH

� 3:5).



To appear in Bell Labs Technical Journal. May, 2000 8

There are important differences between theother MRs in
the two models. In the AIM case, these MRs are done on a
different software entity, but are not different from theno-
TECH MRs in any other way. In the VE case, these MRs
did not contain #version lines and so it was impossible to
determine if the VE was used. Furthermore, such MRs are
likely to touch newer code (without the proliferation of #ver-
sion lines) and be much smaller. Consequently,
TECH and

no�TECH are both larger than unit in the VE case.

Finally, the estimates indicate that the defect repair
changes require 50 to 100 percent more effort than compara-
ble changes of other types (�Fix � 1:5 for the VE subset of
changes and�Fix � 2 for the AIM set of changes).

In the analysis above we have accounted for the possibil-
ity that the change size might differently affect the MR ef-
fort when technology is used. A more serious issue is that
the technology might affect the functionality delivered by the
average change. The next section discusses how to account
for this extra effect of the technology.

4.5 Calculating Value Added by an Average
Change

The models above provide us with the amount of effort spent
at the fine MR level. More radical technologies like appli-
cation engineering environment, might change the definition
of MR so that MRs no longer implement the same function-
ality (or some other value added to the software entity) as
before. We do not have any reason to believe that a tool
like VE could have such an effect. However, in the AIM
case we chose to adjust the effort savings for an average MR
accordingly. More formally, letfTECH be the functionality
implemented by an average MR using the technology, while
fno�TECH the functionality implemented by an average MR
that does not use the technology. Then the ratio of efforts
to implement the same amount of functionality without and
with the technology would be:


no�TECH


TECH

fTECH

fno�TECH
(1)

In the particular product the new functionality was called
software features. Features add value to the software because
they generate revenue and enhance competitiveness of the
product. We assume that on average, all features implement
similar amount of value. This is a reasonable assumption
since we have a large number of features under both con-
ditions and we do not have any reason to believe that the

definition of a feature changed over the considered period.
Consequently, even a substantial variation of functionality
among features should not bias the results.

We determined the software features for each MR (MR
implementing new functionality) using an in-house database.
We had 1677 AIM MRs involved in implementation of 156
distinct software features and 21127 pre-AIM MRs involved
in implementation of 1195 software features, giving 11 and
17 as the MR per feature ratio. Based on this analysis an
average AIM MR implement about 60 percent more func-
tionality than the average pre-AIM MR.

To estimate the total effect of the technology we need do
integrate these effort savings over all changes and convert
effort savings to cost savings. Also, we need to subtract the
cost of creating and maintaining the technology itself.

The functionality in 1677 AIM MRs would approximately
equal the functionality implemented by 2650 pre-AIM MRs.
The effort spent on 1677 AIM MRs would approximately
equal the effort spent on 420 hypothetical pre-AIM MRs us-
ing the estimated 75% savings in change cost obtained from
the models above. This leaves total cost savings expressed
as 2230 pre-AIM MRs.

To convert the effort savings from pre-AIM MRs to techni-
cal head count years (THCY) we obtained the average pro-
ductivity of all developers in terms of MRs per THCY. To
obtain this measure we took a sample of relevant develop-
ers, i.e., those who performed AIM MRs. Then we obtained
the total number of MRs each developer started in the pe-
riod between January 1993 and June 1998. No AIM MRs
were started in this period. To obtain the number of MRs per
THCY, the total number of MRs obtained for each developer
was divided by the interval (expressed in years) that develop-
ers worked on the product. This interval was approximated
by the interval between the first and the last delta each devel-
oper did in the period between January 1993 and June 1998.
The average of the resulting ratios was 36.5 pre-AIM MRs
per THCY.

Using MR per THCY ratio the effort savings expressed
as 2230 pre-AIM MRs are equal to approximately 61 tech-
nical head count years. Hence the total savings in change
effort would be between $6,000,000 and $9,000,000 in 1999
US dollars. This assumes technical head count costs vary-
ing between $100K and $150K per year in the Information
Technology industry.

The total expense related to the AIM DE effort has been
estimated to be 21 THCY. Based on our calculated effort sav-



To appear in Bell Labs Technical Journal. May, 2000 9

ings, the first nine months of applying AIM saved around
three times (61/21) more effort than was spent on implement-
ing AIM itself.

We also compared our results with effort savings predic-
tions documented in the business cases for AIM and several
other DE projects performed on the 5ESS software. Our re-
sults were in line with the approximate predictions given in
these documents indicating that DE interval reduction to one
third to one fourth of pre-DE levels.

5 Related Work

The framework to evaluate effects of a tool is described in
[2]. The methodology to assess the impact of Domain Engi-
neering application environments is given in [18]. In this pa-
per we extend and unify both frameworks to create a general
approach for evaluating the impact of any software technol-
ogy. We focus on practical applications of the approach by
performing a detailed step-by-step analysis of two types of
new technology.

This technique is very different in approach and purpose
from traditional cost estimation techniques (such as CO-
COMO and Delphi [5]), which make use of algorithmic or
experiential models to estimate project effort for purposes of
estimating budget and staffing requirements. Our approach
is to estimate effort after actual development work has been
done, using data primarily from change management sys-
tems. We are able to estimate actual effort spent on a project,
at least for those phases of development that leave records on
the change management system. This is useful for calibrat-
ing traditional cost models for future project estimation. In
addition, our approach is well-suited for quantifying the im-
pact of introducing new technology to existing development
processes.

6 Summary

We present a methodology to obtain cost savings from use of
a software technology exemplified by a case study of a tool
and an application engineering environment. We find that the
change effort is reduced about 40% in the VE tool example
and about four times in the application engineering environ-
ment example. Although both technologies were a success,
the differences in relative savings are not surprising. The
more radical change involving a GUI based programming

environment can have correspondingly more significant im-
pact than the use of a tool assisting only in a more narrowly
defined task. It suggests that the usage of even very effective
tools may have impact of improving productivity on the or-
der of 10%, while to achieve more significant savings a spe-
cial programming environment to accomplish the frequently
repeating set of tasks has to be created. Of course, creation of
such environment may be more costly than the purchase and
maintenance of a tool, so each technology has to be applied
only with a careful consideration of its benefits.

The described methodology is based on automatically ex-
tractable measures of software changes and should be eas-
ily applicable to other software projects that use source code
version control systems. Since most of the change measures
are kept in any version control system, there is no need to
collect additional data.

We described in detail all steps of the methodology to en-
courage replication. We expect that this methodology will
lead to more widespread quantitative assessment of software
productivity improvement techniques. We believe that most
software practitioners will save substantial effort from trials
and usage of ineffective technology, once they have the abil-
ity to screen new technologies based on a quantitative eval-
uation of their use on other projects. Tool developers and
other proponents of new (and existing) technology should
be responsible for performing such quantitative evaluation.
It will ultimately benefit software practitioners who will be
able to evaluate appropriate productivity improvement tech-
niques based on quantitative information.

References

[1] M. A. Ardis and J. A. Green. Successful introduction
of domain engineering into software development.Bell
Labs Technical Journal, 3(3):10–20, September 1998.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus. Us-
ing version control data to evaluate the effectiveness
of software tools. In1999 International Conference on
Software Engineering, Los Angeles, CA, May 1999.
ACM Press.

[3] D. L. Atkins. Version sensitive editing: Change his-
tory as a programming tool. InProceedings of the
8th Conference on Software Configuration Manage-
ment (SCM-8), pages 146–157. Springer-Verlag, LNCS
1439, 1998.



To appear in Bell Labs Technical Journal. May, 2000 10

[4] V.R. Basili and R.W. Reiter. An investigation of hu-
man factors in software development.IEEE Computer,
12(12):21–38, December 1979.

[5] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[6] F. P. Brooks, Jr. No silver bullet: Essence and accidents
of software engineering.IEEE Computer, pages 10–19,
April 1987.

[7] J. Coplien, D. Hoffman, and D. Weiss. Commonality
and variability in software engineering.IEEE Software,
15(6):37–45, November 1998.

[8] J. O. Coplien, D. L DeBruler, and M. B. Thompson.
The delta system: A nontraditional approach to soft-
ware version management. InInternational Switching
Symposium, March 1987.

[9] D.A. Cuka and D.M. Weiss. Engineering domains:
executable commands as an example. InProc. 5th
Intl. Conf. on Software Reuse, pages 26–34, Victoria,
Canada, June 2-6 1998.

[10] B. Curtis. Substantiating programmer variability.Pro-
ceedings of the IEEE, 69(7):846, July 1981.

[11] T. L. Graves and A. Mockus. Inferring change effort
from configuration management databases. InMetrics
98: Fifth International Symposium on Software Met-
rics, pages 267–273, Bethesda, Maryland, November
1998.

[12] A. K. Midha. Software configuration management for
the 21st century.Bell Labs Technical Journal, 2(1),
Winter 1997.

[13] A. Mockus, S. G. Eick, T. L. Graves, and A. F. Karr. On
measurement and analysis of software changes. Tech-
nical report, Bell Laboratories, 1999.

[14] Audris Mockus and Lawrence G. Votta. Identifying
reasons for software change using historic databases.
In International Conference on Software Maintenance,
San Jose, California, October 2000.

[15] A. Pal and M. Thompson. An advanced interface
to a switching software version management system.
In Seventh International Conference on Software En-
gineering for Telecommunications Switching Systems,
July 1989.

[16] M.J. Rochkind. The source code control system.IEEE
Trans. on Software Engineering, 1(4):364–370, 1975.

[17] E. M. Rogers.Diffusion of Innovation. Free Press, New
York, 1995.

[18] H. Siy and A. Mockus. Measuring domain engineering
effects on software coding cost. InMetrics 99: Sixth
International Symposium on Software Metrics, pages
304–311, Boca Raton, Florida, November 1999.

[19] D. Weiss and R. Lai.Software Product Line Engineer-
ing: A Family-Based Software Development Process.
Addison-Wesley, 1999.



To appear in Bell Labs Technical Journal. May, 2000 11

Table 1: Model Coefficients

Model Coefficient VE estimate VE p-val VE 95% CI AIM estimate AIM p-val AIM 95% CI
� 0.05 0.6 [-0.18,0.29] 0.5 0.000 [0.3,0.7]

�Fix 1.61 0.002 [1.2,2.1] 2.1 0.002 [1.4,3.1]
I 
TECH 1.34 0.4 [0.7,2.6] 0.27 0.000 [0.17,0.44]


no�TECH 1.94 0.007 [1.2,3.0] 1.07 0.68 [0.7,1.5]

�Fix 1.58 0.002 [1.2,2.0] 1.98 0.002 [1.3,2.9]
II 
TECH 1.34 0.35 [0.7,2.6] 0.29 0.002 [0.14,0.58]


no�TECH 1.96 0.004 [1.3,3.0] 1.00 0.9 [0.7,1.5]


