
Empirical Estimates of Software Availability of Deployed
Systems

Audris Mockus
Avaya Research
233 Mt Airy Rd

Basking Ridge, NJ 07920

audris@mockus.org

ABSTRACT
We consider empirical evaluation of the availability of the de-
ployed software. Evaluation of real systems is more realistic,
more accurate, and provides higher level of confidence than
simulations, testing, or models. We process and model in-
formation gathered from a variety of operational and service
support systems to obtain estimates of software reliability
and availability. The three principal quantities are the total
runtime, the number of outages, and the duration of outages.
We consider methods to assess the quality of information in
customer support systems, discuss advantages and disadvan-
tages of various sources, consider methods to deal with miss-
ing data, and ways to construct bounds on measures that
are not directly available. We propose a method to assess
empirically software availability and reliability based on in-
formation from operational customer support and inventory
systems and use a case study of a large communications sys-
tem to investigate factors affecting software reliability. We
find large variations among platforms and releases and find
the failure rate to vary over time.

Categories and Subject Descriptors: D.2.8 [Software
Engineering]: Metrics — Product metrics, Management –
Software quality assurance (SQA)

General Terms: Measurement, Reliability

1. INTRODUCTION
Many businesses depend upon uninterrupted performance

of software systems to support their activities and any un-
planned downtime of such systems results in significant costs
and negative publicity. Some common examples include
trading and banking systems. Therefore, many software
and hardware systems are specially designed to support such
high availability applications. A lot of effort and thought has
gone into design and verification activities to improve the re-
liability of such products. The modeling of fault occurrences
is also a large and important field of study. Unfortunately,
few publications are devoted to an empirical evaluation of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISESE’06, September 21–22, 2006, Rio de Janeiro, Brazil.
Copyright 2006 ACM 1-59593-218-6/06/0009 ...$5.00.

actual availability of deployed systems or on studies how to
collect such data. Evaluation of real systems is more real-
istic, more accurate, and provides higher level of confidence
than alternative approaches that include simulation, testing,
and quality models. Furthermore, some customers were re-
questing availability measures, therfore we set to obtain the
relevant data and estimates in the context of high availabil-
ity communication software for traditional and IP telephony.
Such estimates of reliability and availability are also com-
monly referred to as deployed or operational measures of
reliability and availability.

We used information gathered from a variety of opera-
tional and service support systems and then archived, vali-
dated, filtered, modeled, and integrated that data to obtain
the quantities needed to estimate the reliability and avail-
ability of the deployed systems. The three principal com-
ponents were the total runtime of the relevant systems, the
number of outages, and the duration of outages. Perhaps
not surprisingly, the outage information was recorded much
more carefully than the information about the system pop-
ulation, and especially, the population that is capable of
reporting the outages.

We consider methods to assess the quality of information
in customer support systems, discuss advantages and disad-
vantages of various sources, consider methods to deal with
missing data, and ways to construct bounds on measures
that are not directly available.

Our primary contribution is to propose a method to as-
sess empirically software availability and reliability based on
information from operational customer support and inven-
tory systems. In addition, the novelty of our approach has
several aspects. The precise information about the system
population, configuration, and age is linked to the outage
information in order to produce more accurate estimates of
availability. The methodology of data collection to estimate
availability of software is proposed. The experiences and
findings applying the approach to a large enterprise com-
munication system are discussed. We ask several practical
and theoretical questions and evaluate them based on the
obtained results. In particular, we compare simple to ob-
tain approximations of reliability with more accurate, but
harder to obtain estimates. We also evaluate if the common
reliability measure of mean time between failures (MTBF)
is appropriate for varying system runtimes by investigating
the hazard function.

The findings from a case study show that the software reli-
ability strongly depends on several of factors, and the failure
rate is not constant over time. This suggests that the his-



toric measures that imply a constant failure rate (including
MTBF) may not be appropriate.

Our general approach contains four main steps:

1. Events representing outages are collected and associ-
ated with the systems that generated them.

2. Outage durations are estimated.

3. The runtime for systems that can potentially generate
such events are estimated.

4. The quality models are fit for our case study and the
relevant results are reported.

We start with motivation in Section 2, describe the con-
text and related work in Section 3, describe various sources
of data in Section 5, present the methodology in Section 6,
describe the results in Section 7, and discuss the approach
in Section 8.

2. MOTIVATION
From our experience it appears that the lack of results in

the area of empirical estimation of software availability is at
least partly attributable to a large amount of time and effort
needed to empirically estimate the availability of deployed
systems [1]. Another issue may be the diversity of tools
and processes used to track customers issues and deployed
inventory. This makes it difficult to propose a methodol-
ogy general enough to apply widely. The resulting lack of
publications leaves a gap in methods, metrics, and bench-
marks needed to collect, validate, and compare the empiri-
cal availability measures. Nevertheless, the potential bene-
fits are great. Despite careful design and extensive testing
and verification, issues do occur in deployed systems. The
models, simulations, and even early introduction programs
do not accurately represent actual experiences of the cus-
tomers running the system partly due to a large diversity of
configurations and usage patters end users tend to subject
the software.

Furthermore, such high-availability systems tend to be de-
ployed earlier by customers with lower demands on availabil-
ity. The availability estimates based on such early deploy-
ment can then be used to improve systems for the most sen-
sitive customers or to adjust the deployment schedule [11].

The ability to gauge the actual availability of deployed
systems can provide assurances to customers and action
plans for software producers. Such action plans may be
focused not simply by the values of the availability mea-
sures, but also by the relative contribution of different out-
age causes that could be gleaned from the predictions of
reliability and availability models.

3. BACKGROUND AND RELATED WORK
One of the most important aspects of assessing availability

of deployed systems is to obtain precise information about
dates and configurations of software installations and up-
grades and being able to link that information to reported
problems. There may be two major issues in being able to
obtain such data. The lack of information on who has in-
stalled what software and when may be unavailable because
of the fact that software is freely available for download on
numerous ftp mirrors that are not controlled by the soft-
ware producer. Even if such mirrors are controlled, not all
downloads may lead to an installation.

In cases when the distribution is controlled via download
tracking or licenses, there often is no way to relate outage
information to the date or configuration of the system in-
volved. Only cumulative number of systems and events are
available over time. This limits the accuracy of availabil-
ity estimates because the information about the age of the
system when the event occurred can not be obtained. As
was shown in [11], the probability of adverse events changes
dramatically with time elapsed from the installation or up-
grade.

Although it is possible to obtain some estimates of avail-
ability in such situations [2], we focus on the case where
installation information can be obtained and linked to the
outage information as discussed below. Although such rich
data may not be available for many systems, it provides
more accurate estimates of availability and provides basis
to compare and evaluate more detailed models of availabil-
ity.

The availability estimation of deployed systems is impor-
tant not just in software. In fact, a routine commercial usage
is most common for hardware reliability, for example, auto-
mobiles and appliances. Below, we review approaches used
more broadly and compare them with the software domain.
In auto industry the cost of warranty is estimated based on
the repairs done under the warranty. The population of cars
is obtained from the sales data and the instances of repairs
from the warranty data. The age and milage of the cars
determine when the manufacturer’s warranty expires and,
therfore, has to be available in repair instances. Repairs that
are done post-warranty present an estimation challenge, be-
cause that data are not available to manufacturers. Because
warranty expires based on automobile’s age and milage, this
presents a complex problem when estimating reliability [9,
17]. For appliances the warranty is typically provided for a
fixed term. However, the repairs after the warranty period
censor some observations [8]. The software producer ends
up fixing the software problems and, therefore, all fixes are
known to the producer. Nevertheless, the warranty affects
the probability that a problem will be reported as discussed
below.

Unlike cars where runtime can be approximated via mi-
lage and refrigerators where runtime is approximated via
calendar time, other consumer products have more varied
usage. Work in [18] considers ways to estimate actual usage
time of the products. In our case of enterprise communi-
cations software the runtime is approximated via calendar
time since installation, though the intensity of usage varies
with daily, weekly, and other business cycles.

The ways to predict reliability early in the design cycle
based on information on existing similar products is consid-
ered in [3]. For example, prediction of deployed reliability
from the testing results in a large telecommunications sys-
tem are presented in [19].

An excellent summary and history of availability measures
for communications systems is presented in [10]. Unfortu-
nately it does not delve into the most complex issues on how
to obtain various availability measures.

Some issues of missing data in availability estimation are
considered in [7], but the reference is fairly hard to obtain. A
more detailed list of issues of collecting and filtering software
trouble reports are presented in [5], nevertheless the issues
of estimating the relevant population of systems central to
our contribution are not discussed.



Although our work can be used as a basis for fitting and
comparing various reliability models (see, e.g., [13]), it is not
the primary objective of this study.

We continue by introducing basic information about the
software system in our case study.

4. ENTERPRISE COMMUNICATIONS SOFT-
WARE

Our case study concerns the communications software in-
stalled on many Avaya telephony systems. This software
system is an established product and embodies several decades
of knowledge and experience in the telephony field. In a re-
cent release, the software contains approximately seven mil-
lion lines of code mostly in C and C++. The software devel-
opment organization deploys major releases on a fixed sched-
ule, with subsequent minor releases that bundle patches and
refinements to the system.

Many releases are in the field and are used by tens of thou-
sands of customers, many of whose businesses depend on the
high availability of the product. This makes the software ex-
ceedingly difficult to enhance while maintaining the smooth
operation of the hardware/software combinations deployed.

Here we are primarily concerned about information ex-
tractable from customer support and monitoring systems
that track, among other things, information about the time
of installation and upgrades by customers as well as cus-
tomer reported outages, and automatically collected data
about restarts.

5. MEASUREMENT SOURCES
In this section we describe various sources of information

needed to estimate availability. We briefly present the data
sources representing customer support and monitoring sys-
tems and the essential details about the way each system
is operated. Although some aspects may be unique to our
case study, the overall structure and process of data col-
lection is fairly common. We have gained the knowledge
of the way these support systems are operated over several
years as we were investigating several questions related to
customer perceived software quality. We also spent signifi-
cant time validating various measures extracted from these
systems. Although different from software development sup-
port systems, customer problem and inventory tracking sys-
tems have a lot in common. The largest difference is that
software failures are tracked for each customer - not for each
problem as happens in the bug tracking systems. The tech-
nical difficulty of linking the bug and the code in software
development support systems is replaced by the difficulty of
linking the configuration and upgrades of individual systems
to the outages. The difficulty of recognizing if a software
change fixes a bug or is an enhancement is replaced by the
difficulty of recognizing if a software outage was caused by
reasons not related to software.

Figure 1 shows a simplified view of operational systems
and data processing presented in detail below. The pri-
mary data sources (within dotted boxes) are represented by
three operational systems used to manage inventory, cus-
tomer service issues, and alarms. Each one represents the
lowest level in the data processing pipeline. Having several
levels in the pipeline separates concerns of interfacing the
operational systems (level 0), filtering, cleaning, and linking
the data sources (level 1), and construction of the metrics

of interest (level 2). As the operational systems (and anal-
ysis goals) evolve over time it makes it easier to maintain
the entire measurement framework as each level has its own
set of tests that can be run when some aspects of the data
processing (or the underlying process) have changed. In ad-
dition to processing layers, the analyzed data can be always
traced back to the original sources via various identifiers,
such as, system, ticket, and alarm ID’s, in order to validate
correctness of the processing steps.

Based on the understanding of the service processes the
relevant attributes are extracted from operational systems
and then filtered, augmented, and analyzed as described in
sections below.

In section 5.1 we repeat advantages and disadvantages
of using support systems to measure and model software
quality that were discussed in, for example, [11].

5.1 Advantages and pitfalls of using informa-
tion from support systems

Probably the most obvious advantage of using data from
support systems such as customer problem tracking system
is that the data collection is non-intrusive because such sys-
tems are already deployed and used. However, that does
not reduce the need for in-depth understanding of how the
support systems are used.

We also benefit from a long history of past projects whose
data has been captured in support systems, enabling his-
toric comparisons, calibration, and immediate diagnosis in
emergency situations. However, it takes significant time and
effort to understand the data available in these systems, how
to use it, and to get to the point where one can take advan-
tage of it. Sometimes, additional data collection may be
needed to facilitate modeling, as was in our case when we
wanted to obtain the historic system installation dates.

The information obtained from the support systems is of-
ten fine grained, at the trouble ticket/software alarm/customer
installation level. However, links to aggregate attributes,
such as features and releases, is often tenuous. Furthermore,
there may be challenges when cross-linking support systems
in different domains, such as the alarms, outage reports, and
equipment configuration.

The information tends to be complete, as every action in-
volving development or support is recorded. However the
information about what the action pertains to may be non-
trivial to infer and some of the data entries, especially those
not essential for the domain of activity, tend to be incon-
sistently or rarely supplied. Alarms may indicate system
restart, but the cause may not always be clear: was the
system restarted by the user or was it misconfigured at the
time?

The data are uniform over time as the support systems
are rarely changed because they tend to be business-critical
and, therefore, difficult to change without major disruptions.
That does not, however, imply that the way the systems
were used was constant over the entire period one may need
to analyze.

Even fairly small projects contain large volumes of infor-
mation in the support systems making it possible to detect
even small effects statistically. This, however, depends on
the extractability of the relevant quantities. For example,
missing values in several attributes may dramatically reduce
the effective sample size.

The systems are used as a standard part of the project, so



PlatformSystem IDSystem IDSystem ID

System ID

First date

Weekly 
snapshots

Ticketing system

Resolution

Other attributes

Installed base

base
Alarming

ticket/alarm
Outage/Restart

Release/Platf.

Rel. launch

System Id/Conf.

Time

Other alarm info

Alarming system
Augmented

Metrics/
Bounds

Level 0 Level 1 Level 2

Ticket ID

Time

Alarm type

Alarm ID MTBF

Availability

Population

Survival

Hazard

Outage duration

Platform
System ID

Release

Inst/runtme
System ID

Inventory system

Date modifiedConfiguration

Customer Info. Release

Figure 1: A simplified view of data sources and processing steps. Dotted boxes indicate operational systems
and thick solid boxes represent analysis tables.

the software project is unaffected by experimenter intrusion.
We should note that this is no longer true when such data
are used widely in organizational measurement. Organiza-
tional measurement initiatives may impose data collection
requirements that the organizations might not otherwise use
and modify their behavior in order to manage the measures
tracked by these initiatives.

The largest single obstacle for using the support systems
for analysis is the necessity to understand the underlying
process and the way the systems are used. This requires
validation of the values in fields used by the developers and
support technicians in order to assess the quality and us-
ability of the attribute. Common and serious issues involve
missing and, especially, default values that may render an
attribute unusable. Any fields that do not have a direct
role in the activities performed using the project system are
highly suspect and, often provide little value in the analysis.
As the systems tend to be highly focused on tracking issues
or versions, extracting reliable data needed for the analysis
may pose a challenge.

The following subsections detail the nature of various data
sources needed to estimate system availability.

5.2 Outage information
The primary data source comes from customer support

(ticketing) systems where customer reported issues are tracked
until resolution. Two sources for such data are available:
customer reported issues (tickets) and automatically col-
lected alarms. Tickets represent issues where a person repre-
senting the customer has filed a report, usually via a phone
call. Such issues, referred to as calls or tickets, contain in-
formation about customers’ system, the description of the
problem and resolution, the dates when the problem was re-
ported and resolved, as well as a list of various teams that
were involved in handling the problem. Data fields indi-
cating standard causes and resolutions and severity are also
available. The free text description contains a standard ab-
breviation indicating cases when a customer experienced an

outage. Cause and resolution codes indicate if the problem
was external (e.g. flood), if it was related to hardware, and
so forth.

A large subset of systems may report issues automatically,
without human involvement. We call such reports alarms.
Alarms indicate the nature of the problem much more pre-
cisely. For example, alarm may indicate system or proces-
sor restart, the type of the restart (hot, warm, or cold),
whether or not it was an active or a standby processor that
have restarted. Many other types of alarms not related to
restarts are also recorded.

Certain events such as restarts trigger additional data col-
lection, including obtaining complete system logs over some
period prior and after the restart. Such logs provide infor-
mation needed to determine the cause of the event.

Each source of event data has its advantages and dis-
advantages. Calls tend to reflect the actual problems cus-
tomers have experienced, while some alarms may be coming
from misconfigured systems that are not in operational use.

However, the call data may contain human errors made
while reporting the problem. If a problem is too minor to
be noticed or to be reported by a customer, it may be com-
pletely missing from the call data.

Alarms provide a finer grained and more complete infor-
mation about events that may cause interruptions in service,
but it does not have any indication if the system was in ser-
vice at the time. Certain other events may be originated by
external causes, such as extended power failures or network
outages, that should not be a part of software availability
calculation.

To simplify our case study presentation we focus on sys-
tem restarts. Although some of restarts may not cause ser-
vice outages (because of the hardware duplication or a sys-
tem not being in service at the time of restart) on one hand,
and may not represent all service outages on the other hand,
they are clearly indicating software malfunction and are re-
sponsible for a very important subset of system outages.



System restarts have several flavors. Warm restarts are the
most common, last a few seconds and typically do not cause
system-wide outages. Cold restarts and reloads are much
more rare, but to be conservative we are focusing on the
“warm” restarts. Considering all restarts provides a rough
lower bound on reliability. To improve it we may consider
only restarts that result in customer reported outages. That
should provide an upper bound on reliability.

For the releases and products we consider in our case
study there are approximately 14 thousand alarms related
to software restarts. There were around 80,000 systems in
the field that were running the software we study.

The next subsection describes the nature of information
needed to estimate the population and runtime of the de-
ployed systems.

5.3 Installed population of systems
Unless the software is freely distributed, the distribution

and licensing are often carefully tracked. Such tracking pro-
vides the dates when systems are installed or upgraded with
a new release. Often each system is uniquely identified in
such an inventory and in the ticket data, making it possible
to calculate system’s age at the time of the problem report.
In our case the calls and alarms included system ID, there-
fore we could calculate the age of the system at the time of
the adverse event.

Unfortunately, many additional issues remain even in this
case. First, not all the systems report adverse events in the
same way or with the same probability. If the system is un-
der the warranty or under the service contract, the calls do
not incur costs to customer, but in the absence of service
contract, calls are charged according to their severity, there-
fore potentially reducing the likelihood of a call. Second,
some systems may not be able to report alarms either due
to misconfiguration, lack of service, or customer’s desire to
keep their networks closed.

Therefore, for each type of adverse events, we need to esti-
mate the population of systems that are capable of reporting
them (installed base and alarming base in Figure 1) and sep-
arate them into subpopulations according to the presence of
service contract and other factors that may affect the prob-
ability of adverse events being reported.

Avaya sells a range from very large to medium sized com-
munication equipment in three hardware reliability config-
urations called simplex, high, and critical. Historically, the
media and control information used to travel on separate
communications networks, though in IP telephony that changed
somewhat. Roughly, the systems with high configuration
have duplicated hardware for the communication control
and systems with the critical configuration have duplex hard-
ware for communication control and for the media.

Clearly, that outage information should be treated differ-
ently for each type of configuration. For example, if a restart
occurs on a standby hardware, that does not constitute an
outage. We will discuss it later, but the salient point here is
that we need to know the configuration of each system. For-
tunately, in our case, we were able to determine the size and
the reliability configuration of the installed systems, albeit
not for all of them. This necessitates further subdivision of
system population into the ones with known and unknown
sizes and configuration.

5.4 The runtime of systems
The reliability and availability calculations require total

runtime of the systems in the measured population. Once
the desired population of systems is determined the runtime
is determined by assuming that for each system i the system
was running from time Ai to time Bi.

For a particular system i the time Ai is either the es-
timated installation time for the release under considera-
tion or the time when the observation interval was started,
whichever is more recent. The time Bi represents the time
when the data extraction scripts are run or the time a newer
release was installed on the system i, whichever is earlier.

The total runtime for a release is the sum of Bi−Ai over
all systems i that run or ran the release of interest. The
runtime for each release/platform combination is obtained
by summing over the systems representing that combination.

Although some systems do not run continously, it is a rea-
sonable assumption that communication systems do. For
other types of systems the estimate of runtime may present
additional challenges. The units for runtime measures are
system calendar years. It is worth mentioning, that the in-
tensity of usage may be of interest as well. Outages during
intense usage periods may bring more damage and they also
may be more likely to occur when the systems are over-
loaded. We do not consider such phenomena here.

5.5 The duration of outages and restarts
The duration of call related outages can be estimated by

calculating time elapsed between the ticket report and res-
olution. Unfortunately this interval does not always accu-
rately reflect the outage duration as the ticket may not be
closed immediately following the outage resolution. Some-
times it is closed days or weeks later. Therefore this dura-
tion can serve only as an upper bound on the actual outage
duration.

The software restart related outages can be obtained quite
precisely either from the runtime logs or from the simula-
tions and depend on the system size, configuration and the
type of the restart. The restart outage duration has three
components. The first component is server related and de-
pends on the type of the restart (warm/cold) and the speed
of the processor. The second component is related to the
number and type of external boards that have to be restarted
in cases of a cold server restart. The last component involves
the time it takes for the terminals (phones) to re-register af-
ter certain types of restarts and is primarily dependent on
the number of the phones.

6. METHOD
The reliability and availability of software depends on

many factors, including type, size, configuration, and us-
age of the system. The probability of observing an outage
also depends on deployment factors, including when in the
release cycle the system was deployed (early adopters tend
to suffer), and the time elapsed since installation (the first
weeks after installation are fraught with perils of miscon-
figuration). Notice, that we have not even mentioned the
size and complexity of software release itself, often the only
factor considered in some reliability models. This is not ac-
cidental, as other factors listed above appear to be more
important in determining software availability.

Our proposal, therefore, is empirically to estimate the
availability based on all the measured factors that strongly



influence it. In particular, we want to predict software avail-
ability for an individual customer. For example, we can
predict the availability in the first month of operation of a
large, critical configuration system, deployed six months af-
ter launch date for a particular software release. To make
confidence statements about the reliability we also have to
obtain the distribution of the time intervals between out-
ages.

The inputs for such model come from the inventory and
failure reports from deployed population of software sys-
tems. We describe ways to use bounds for measures that
could not be accurately estimated via direct means and dis-
cuss how to overcome issues related to highly structured
missing data that could dramatically bias the results.

6.1 Bounding measures of interest
Information obtained from operational systems may not

always contain the most relevant measures of interest either
because they were not collected, because there was some
bias in the way the measures were observed, or because the
desired quantity is difficult or impossible to measure exactly.
One of the most difficult problems in our case was to identify
outages that were caused by software and resulted in service
disruption. Although apparently simple, this is virtually
impossible to measure precisely. Some instances that are
particularly hard to detect are when system restarts, but
the restart was caused by an operator, a power failure, or
by some other external circumstances. We chose to include
all restarts in our estimate, even though it underestimates
the actual availability.

Another kind of difficulty is to recognize restarts that do
not cause service disruptions. This may be a simple case
when the system is not in operational use, is being installed
or (mis)configured, or a more complex case when the restart
is occurring for the standby processor. A way to address this
issue is to consider restarts that are associated with cus-
tomer calls. This provides the upper bound on availability,
as there may be service disruptions that were not noticed or
not reported by the customer.

6.2 Missing data
As any real data, calls, alarms, and system inventory con-

tain plenty of missing or misspecified values. Because the
mechanism through which the data are missing vary depend-
ing on the source, we consider each separately. Although it
is possible to apply various imputation techniques to repop-
ulate some of the missing values, here we concentrate on
the simplest approach in dealing with missing data — re-
moving incomplete cases. Given the highly structured data
sources, even this simplistic approach presents substantial
difficulties.

6.2.1 Calls
Virtually all systems are capable of reporting calls, be-

cause the customer may call Avaya in case of any opera-
tional issues with the system. However, because the cus-
tomers without a warranty or support contract have to pay
for these calls, their reporting pattern is different. It is
reasonable to assume that customers without the support
contract are more likely to resolve issues without notifying
Avaya, therefore, the probability that an outage will be re-
ported will be lower and the availability estimates based on
customer calls will be optimistic.

Another complication is that operators taking the call
may not always designate it with the special code indicating
an outage. The reliability would then be overestimated if
the operators tend to miss including the outage designation
more often than erroneously including it.

6.2.2 Alarms
Alarms, unlike calls, are automatically reported, never-

theless, the issues with the missing data remain. For ex-
ample, system restarts during network outages may be not
recorded. This eliminates the record for some of the outages.
One can, however, argue that such outages could not have
been the cause of service interruption because the network
was already down.

A more complex issue arises from the fact that not all
systems are capable of reporting restarts for reasons out-
lined earlier. If we simply obtain the total observed outage
time and total runtime for all the systems, the availability
would be overestimated because some of the runtime was
for the systems that could not report restarts. If we are
not concerned about the availability of systems that are not
capable of reporting alarms or if we have good reasons to
assume that their availability will be similar, we can sim-
ply investigate the population of systems that are capable
of reporting alarms. That was the approach we took.

It is impossible to obtain the exact inventory of all sys-
tems capable of reporting restarts. Therefore, we use several
approximations of that population. The largest set involves
all systems that ever generated at least one alarm, the in-
termediate set involves systems that generated at least one
alarm within the last 12 months, and the smallest set in-
volves only systems that alarmed within the last six months.
These bounds were based on the expert assessment that the
probability a system will report at least one alarm within
12 months to be close to one.

There is, unfortunately, a potential problem with such an
estimate. If the probability for a system to report an alarm
is uniform over time, then the numbers for systems that
have been installed for only a few months will be underes-
timated. Fortunately that probability is highly nonuniform
over time, with initial weeks during and following instal-
lation most likely to generate alarms (see Figure 5). Al-
though it alleviates undercounting issues for new systems,
it does not eliminate it completely. Therefore, we may need
to make necessary adjustments in the availability models.
In particular, it is relatively straightforward to estimate the
undercounting of the new alarming systems by observing the
times from installation until the first alarm.

6.2.3 Outage duration
Outage duration may be especially difficult to estimate.

For customer reported outages we may not have the exact
outage start time as the customer may not have reported
the outage immediately. We also do not have the exact
time the service was restored because the customer calls are
closed much later than the outages are resolved in order to
investigate and eliminate potential causes of that outage.
The most sensible approach to use in such situations is to
assume that each outage took an average time. Such average
times may be estimated for company or even industry in
focused, in-depth studies.

Restart duration (indicated by alarms) can be estimated
much more precisely, primarily because the time it takes to



complete a particular restart is determined by the system
size, configuration, and the type of restart. Such times can
be obtained in a laboratory settings or based on the system
logs retrieved from the restarted systems.

6.2.4 Inventory
As any other attribute, the information on the type, size,

and reliability configuration is not perfect. Some systems
lack or have incorrect information about size, some about
configuration, and some even about the release installed.
Because misspecification appears to be rare, we focus on
dealing with a large proportion of systems with missing at-
tributes. If we can ignore the availability of systems with
missing attributes of if there are reasons to assume that their
availability will be the same, we can simply consider popula-
tion of systems that have non-missing attributes. For avail-
ability calculations we must drop the outage time reported
for systems with missing attributes. For models with a large
number of predictors there may be relatively few complete
cases (systems that have values for all predictors) making it
difficult to obtain reliable estimates. Therefore, models with
fewer predictors or models capable of handling incomplete
cases may be necessary.

6.3 Other availability predictors
Even when a suitable population of alarms and systems

is selected, further adjustments may be needed because the
estimated availability will likely increase as we go forward
from the general availability date of a software release. The
estimated availability will also be likely to be negatively af-
fected if the fraction of recently installed systems increases,
or if we are considering a larger software release. We ad-
dress these issues separately. First, we investigate each soft-
ware release separately. To control for the system age (time
since installation) and for the time elapsed since the release
launch date, these factors are included in the model. Simi-
larly, other adjustments may be taken into account by using
a suitable model.

6.4 Presenting the results
In essence, our effort is concentrated on empirically ob-

taining three numbers: number of outages, outage duration,
and total runtime. As we discussed, these three estimates
should be obtained for several populations of systems and
each estimate may consist of an upper and a lower bound
and may include various other parameters. In this subsec-
tion lets assume that we have just one estimate for each of
the three numbers and we are only concerned about what
statements could be made regarding software availability.

We consider two kinds of statements that may be of in-
terest. The first kind of statements simply considers if the
observed data is compatible with the specified availability.
In hypothesis testing framework our null hypothesis is that
the system does have the specified availability levels and we
may reject the hypothesis if the probability of observing the
sample is sufficiently small. The deployed systems had spec-
ifications of three, four, and five 9’s for the simplex, high,
and critical configurations. The three nines availability cor-
responds to outage duration of .1 percent (1−0.001 = 0.999,
hence three nines) or around nine hours per year. Four nines
correspond to around one hour per year and five nines to
around five minutes per year.

The other kind of statements are more conservative and

consider lowest values of the underlying availability that are
consistent with the observed sample. In essence, such state-
ments would give us the lowest confidence bounds of avail-
ability that are consistent with observations. More specif-
ically, the first kind of statements can indicate instances
when availability is significantly below the specifications and
the second kind of statements indicate availability levels that
deployed systems are likely to exceed with high confidence.

7. RESULTS
To emphasize and illustrate the relative importance of

dealing with various issues highlighted above, we present a
sequence of results starting with a naive approach followed
by successive refinements. If the simplest approach produces
sufficiently accurate results there is no justification to spend
additional effort on more sophisticated methods. It is usu-
ally better to start from the most basic approach and refine
it as needed. Finally, the basic approximations may high-
light artifacts or data problems that are not mentioned here,
but may be salient in other projects. The pattern of succes-
sive refinements to the analysis models has a similar moti-
vation as the division of data processing into several levels
shown in Figure 1. Although data processing levels use out-
put of the lower level as its inputs, the more sophisticated
models are not built on the output of simpler models, but
on data from the more refined levels.

To simplify the presentation, we focus on outages caused
by restarts. Outage duration may be estimated separately
and in a relatively straightforward manner as described above
and is not central to our findings.

7.1 Simplest estimates
Excluding outage duration leaves us with the reliability

measure or mean time between failures (MTBF). The sim-
plest estimate of reliability is the total run time divided by
the total number of outages. This “naive” approximation
could be made simply from the information presented above.
The total number of system restarts was approximately 14
thousand and there were about 80 thousand system installa-
tions that were running for approximately six months, giving
us a rough estimate of 3 years.

To improve upon this rough estimate we will select a spe-
cific population of systems that have the simplex configura-
tion (relationship between a restart and an outage is more
complex in other configurations) and have a particular re-
lease and a particular hardware platform. We also chose a
three month period (the last quarter of 2005) to reduce the
effects of being close to a release date.

The simplest estimate of dividing the total runtime by
the number of restarts we obtain MTBF of 8 years (we will
refer to it as “Naive+” estimate). If we restrict the runtime
to the estimated population of systems that are capable of
generating alarms, we get MTBF of only 6 years as shown
in Table 1

Naive Naive+ Alarming
Systems 80000 1011 761
Restarts 14000 32 32
Period .5 .25 .25
MTBF 3 7.9 5.9

Table 1: Comparison of MTBF estimates.



The results show a substantial variation in the estimates
justifying the effort spent in trying to increase accuracy. Al-
though restricting the sample to one platform, release, con-
figuration, and a short period of time reduces some of the
variability, there are other sources of variablity, including
system size and time elapsed from the installation and re-
lease launch dates. Furthermore, to make statements about
the variability of the estimates, we need to understand the
distribution of the times between outages. It is unlikely
that the failure rate is constant over time, making the un-
restricted MTBF estimate (without specifying the time pe-
riod) questionable.

7.2 Restart rates
To investigate the restart occurrence in more detail we es-

timate how the restart rates change with time elapsed from
the release installation date. We do not consider the rate
for an individual system (some have a first restart early and
some never restart), but rather for the entire population of
systems. The difficulty of obtaining such rate empirically
lies in the fact that many systems have been running for
time periods that are much shorter than MTBF. Therefore,
we are missing longer restart inter-arrival times. This phe-
nomenon is often referred to as censoring and is common in
medical studies, where patients leave the study before the
treatment outcome is known.

0.0 0.1 0.2 0.3 0.4

0.
85

0.
90

0.
95

1.
00

Years from installation

Pr
op

or
tio

n 
wi

th
ou

t r
es

ta
rts

PlatformG
PlatformI
PlatformM

Figure 2: Kaplan-Meier estimates of the survival
curves for three platforms and two releases.

Here we focus on estimating the distribution of the time
until the first restart after installation or upgrade. To il-
lustrate the similarity to clinical studies where much of the
methodology to cope with censored data was developed, we
provide a “mapping” between our case and terms of a sim-
ple clinical study. Each system represents a “patient” in the
study. The “patient” enters the trial when the system is
installed or upgraded to a new release and leaves the trial
when the first restart occurs or when the next upgrade to a
new release is done. The “trial” ends at the time the anal-
ysis is performed. The presence of a restart indicates the
negative outcome (patient dies). In case of no restarts the
outcome is positive (patient survives).

A common statistical technique to deal with censoring is
to estimate a survival curve using Kaplan-Meier Estimate [6,
4]. The survival curve is a graph showing the percentage sur-
viving versus time. The survival curve is also known as the

reliability function in the context of hardware or software.
We can use the curve to estimate the distribution of restart
times, reliability, or other quality characteristics. Knowing
the distribution of restart times would also allow making
statements about the confidence intervals for the reliability
estimates.

For the survival curve the vertical axis gives the propor-
tion of systems without restarts (surviving). The horizon-
tal axis gives the time elapsed after the system installation.
Figure 2 illustrates Kaplan-Meier estimates for two releases
and three platforms installed or upgraded since October,
2005. There is a large variation among platforms — around
one, ten, and fifteen percent have a first restart within four
months (0.3 years). The survival curve for the second release
is below the one for the first release for all three platforms.
This indicates that time elapsed from the release launch date
(second release was more recent) and/or release size (the
second release was larger) may have reduced reliability. The
plot was generated using R [16] package survival [15]

In order to investigate if the probability of failure is con-
stant over time we present the estimate of the hazard func-
tion in Figure 3 for the same three platforms (we have not
separated the releases when estimating the hazard function).
Hazard function is an instantaneous probability that a sys-
tem will restart at a specified time after installation provided
it has not restarted before that. Figure 3 shows estimates
based on the work in [12] as implemented in the R package
muhaz [14].

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years from installation

Ha
za

rd

PlatformG
PlatformI
PlatformM

Figure 3: Hazard function for three platforms.

The hazard function appears to be decreasing over time
(at least for the considered time interval) and varies among
platforms. Figure 4 shows the hazard function for the plat-
form G that appears to be flat in Figure 3. It follows a
similar pattern to other platforms.

7.3 Adjusting population counts
As described in Section 6.2.2 the population of alarming

systems is not known exactly and has to be estimated. The
estimate considers systems that previously had alarms. Al-
though alarms happen quite frequently (alarms are gener-
ated for many reasons, not just as a result of the infrequent
occurrences of software restarts that are the subject of this
investigation), it is clear that the population of newly in-
stalled systems will be underestimated. The extent of the
underestimation is illustrated in Figure 5.



0.0 0.1 0.2 0.3 0.4

0.0
06

0.0
08

0.0
10

0.0
12

0.0
14

0.0
16

Years from installation

Ha
zar

d

PlatformG

Figure 4: Hazard function for platform G.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Years from installation

Fr
ac

tio
n 

w
ith

 a
la

rm
s

Figure 5: Distribution of time until first alarm. 85%
of the systems generate an alarm within 0.1 years of
operation.

As it is possible to assess the extent of underestimation it
is also possible to adjust the survival and hazard estimates.
For example, we can generate additional observations for
each system that did not have a restart (because restarts
are instances of alarms, a system with a restart can not be
missing from the alarming population). The number of ad-
ditional observations would be proportional to the age (run-
time) of the alarming system. For example, for each system
that ran 0.1 years we generate 1/0.85 − 1 additional ob-
servations. Because we can not add fractional observations
we can generate one with that probability. For comparison,
unadjusted and adjusted hazard estimates are presented in
Figure 6. Because the adjusted estimates are based on a
larger system population, the hazard is lower, especially for
the newly installed systems.

8. DISCUSSION
The investigation suggests a strong effect various attributes

may have on software reliability and availability in the con-
sidered software and illustrates that the failure rate may not
be constant over time, across platforms, or releases. This
makes it difficult to make any general statements about sys-
tem MTBF or availability and suggests that the simplest
estimation methods may provide inaccurate picture. For
example, a customer may want to know the availability of
a new system they are considering. The availability would
depend on a number of factors including the system size and
configuration and on dates the release was launched and in-
stalled. Another practical question may arise if a software
provider would like to assess if the reliability of a new release

0.0 0.1 0.2 0.3 0.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Years from installation

H
a

za
rd

PlatformI
PlatformI adj.
PlatformM
PlatformM adj.

Figure 6: Comparison of unadjusted and adjusted
hazard functions.

has improved in comparison to a previous release. Unless
the estimation models include the key attributes known to
affect the reliability, any differences between the empirical
estimates for two releases are likely to be driven by the differ-
ences between populations of systems running two releases.
For example, if a new release is more frequently deployed
on larger systems the size-unadjusted estimate is likely to
show lower reliability even if size-adjusted estimates are the
same.

However, we can still discuss reliability and availability
for a selected platform and for a specific interval of time.
The estimated hazard and survival functions provide the
basis to make confidence statements about the empirical es-
timates of reliability. We may also investigate the most ap-
propriate distributions for the restart arrival times and build
more complicated models. Such investigations are beyond
the scope of this paper.

Given that the MTBF may be difficult to interpret unless
we fix a specific time period, we are left with the question
of what are the most suitable measures of software reliabil-
ity when the failure rate is not constant? The answer may
depend on the type of software system, but for long-running
communication systems it may make sense to look for a
probability that a system restarts before the next upgrade.
In the domain we are investigating it is not unusual to see the
upgrades occur about every two years. Similarly, availability
could be defined as the fraction of time the system is oper-
ating within the first two years of installation. Obviously,
the appropriate interval may be different for other types of
software that has shorter (or longer) runtimes before an up-
grade. The probability of a restart within 5 months can be
read directly from Figure 2 and varies from less than one
percent to more than fifteen percent depending on release
and platform.

Despite their drawbacks, the simplest models have a sig-
nificant role in the estimation process. Given the complex
structure of data sources the estimation tools are a rela-
tively complex software system in themselves. The simplest
models serve the role of regression tests that can provide an
immediate feedback if some aspects of that analysis system
become incorrect either because of changes in the analysis
system, in the operation support systems, or in the business
process. Similarly, the separation of data processing into



several levels helps to maintain and adapt the analysis sys-
tem to changes brought by evolution in the tools, processes,
and analysis requirements.

9. SUMMARY
We have investigated empirical estimation of reliability

and availability of deployed systems in the context of com-
munications software. The proper estimates are difficult to
obtain because of difficulty of measuring relevant quantities
and complex structure of missing data.

We suggested using approximations to bound the desired
estimates and described various pitfalls if the adjustments
are not made for the missing data. We propose several ways
to deal with missing data and obtain relevant populations
when estimating system reliability and availability.

We looked into the practical question of whether an easy
to compute approximations would be accurate and found
them to be substantially different from the more accurate
estimates that take into account the way the data was col-
lected.

We also evaluate if the common measure of the commu-
nication systems reliability in terms of mean time between
failures (MTBF) is meaningful for varying runtimes by in-
vestigating the hazard function. Our findings indicate that
software reliability strongly depends on several factors, and
the failure rate is not constant over time. This suggests
that the traditional measures that imply constant failure
rate may have to be interpreted with caution.

10. ACKNOWLEDGMENTS
We would like to thank Bahareh Momken, Luke Young,

and many other experts that provided invaluable help and
suggestions for this work.

11. REFERENCES
[1] D. Coit and W. Turkowski. Practical reliability data and

analysis. Reliability Engineering, 14(1):1–17, 1986.

[2] D. W. Coit and K. A. Dey. Analysis of grouped data from
field-failure reporting systems. Reliability Engineering and
System Safety, 65(2):95–101, 1999.

[3] J. Fahy. Estimating warranty and service costs from mtbf
estimates. In Electro/95 International. Professional
Program Proceedings, pages 35 – 47, 21-23 June 1995.

[4] T. H. Fleming and D. Harrington. Nonparametric
estimation of the survival distribution in censored data.
Comm. in Statistics, 13:2469–86, 1984.

[5] K. Kanoun, M. Kaaniche, and J. Laprie. Experience in
software reliability: From data collection to quantitative
evaluation. In Proceedings, Fourth International
Symposium on Software Reliability Engineering,, pages 234
–245, 3-6 Nov 1993.

[6] E. Kaplan and P. Meyer. Non-paramentric estimation from
incomplete observations. J Am Stat Assoc, pages 457–481,
1958.

[7] C. Kjaergaard. Field failure data collection and analysis of
repairable systems. In Reliability Data Collection and Use
in Risk and Availability Assessment. Proceedings of the 6th
EuReDatA Conference, pages 848–858, 1989.

[8] K. Liu. Refrigerator failure early prediction based on
warranty data. In Proceedings of the Annual Reliability
and Maintainability Symposium, pages 195–199, 2002.

[9] M.-W. Lu. Automotive reliability prediction based on early
field failure warranty data. Quality and Reliability
Engineering International, 14(2):103–108, March-April
1998.

[10] H. Malec. Communications reliability: a historical
perspective. IEEE Transactions on Reliability,
47(3):333–345, Sept. 1998.

[11] A. Mockus, P. Zhang, and P. Li. Drivers for customer
perceived software quality. In ICSE 2005, St Louis,
Missouri, May 2005. ACM Press.

[12] H. Mueller and J. Wang. Hazard rates estimation under
random censoring with varying kernels and bandwidths.
Biometrics, 50:61–76, March 1994.

[13] J. D. Musa, A. Iannino, and K. Okumoto. Software
Reliability. McGraw-Hill Publishing Co., 1990.

[14] S. original by Kenneth Hess and R. port by R. Gentleman.
muhaz: Hazard Function Estimation in Survival Analysis.
R package version 1.2.2.

[15] S. original by Terry Therneau and ported by
Thomas Lumley. survival: Survival analysis, including
penalised likelihood. R package version 2.20.

[16] R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2005. ISBN
3-900051-07-0.

[17] B. Rai and N. Singh. Hazard rate estimation from
incomplete and unclean warranty data. Reliability
Engineering and System Safety, 81(1):79–92, July 2003.

[18] N. Sarawgi. A simple method for predicting the cumulative
failures of consumer products during the warranty period.
In Annual Reliability and Maintainability Symposium 1995
Proceedings, pages 384–390, 1995.

[19] X. Zhang and H. Pham. Predicting operational software
availability and its applications to telecommunication
systems. International Journal of Systems Science,
33(11):923–930, Sep 15 2002.


