
Current Research Audris Mockus, http://mockus.org Nov, 2013 1

1 Research Summary

I study software development projects and other complex
systems through the recovery, documentation, and analysis
of digital remains (i.e., Digital Archeology). These digital
traces reflect various projections of collective and individ-
ual activity, but unlike traditional measurement systems, they
represent a complex interplay among individuals, groups,
their culture, and artifacts they produce. While it is straight-
forward to tabulate various measures obtained from digital
traces, the direct interpretation of results is usually mislead-
ing. Only by integrating all relevant (and usually disparate)
sources of data and disentangling contributions from multi-
ple factors, can a meaningful inference take place. Thus, the
fundamental method of Digital Archeology is the reconstruc-
tion and quantification of what actually happens from these
projections.

Data Science — a recently popular term — is not clearly
defined, but, according to common use, it primarily con-
cerns business analytics, where the data and the interpreta-
tion of data are relatively straightforward, i.e., purchasing,
click trails, and social media activity. My focus is on the
methods that go well beyond that by combining disparate
data sources including work, code, organizational, sales, and
customer support histories over extended periods of time to
construct rich, detailed models of events and people, and de-
veloping analysis methods that can identify the evolution and
causes of events.

For example, user-reported defects (the most commonly
used quality measure), are predicated on the existence of a
user engaged in a task utilizing software, on that user ob-
serving a failure and then being willing and able to report
it in detail, and on the product maintainer being interested
and able to fix the defect causing that failure. Because this
long chain of events has negative feedback loops (users stop
using software if the chances of observing a defect become
too high), the defectiveness of software perceived by users is
often negatively correlated with defect density. A meaning-
ful measure of software quality must, thus, account for the
number of users and the amount of usage.

While using digital traces as a measurement system is
enormously complex, such analysis provides a practical,
unmatched ability to conduct live, non-intrusive, and fine-
grained way to gain deep insight into organizational pro-
cesses. Using this approach provides a unique capacity to ob-
serve, analyze, and support software development and other
complex socio-technical systems [1]. The analysis may fo-
cus on entire companies [2, 3] or an entire population of open
source projects [4, 5].

2 Impact

I significantly contributed to the field of software measure-
ment. In particular, my focus on using code changes [6, 7]
as fundamental units of software development — the crit-
ical interface between the code and the person modifying
it — provided a methodology to obtain valid and relevant
(in practice) measures and models based on operation sup-
port systems, such as Version Control Systems (VCS) and
Issue Tracking Systems (ITS). In my early work I demon-
strated how to use software changes obtained from VCS
and ITS as a basic measurement unit and that proved to be
a solid foundation to build upon. In, particular, I showed
how to obtain, classify and measure [7] software changes
obtained from VCS, how to use them for fine-grained es-
timation of effort [8, 9], measure expertise [10] and inter-
dependencies [11, 12], predict defects [13, 14], and, more
generally, to provide insight into software development prac-
tices [1, 15]. The quantification of open source development
practices [1] had impact in domains not related to software
engineering, as shown for example, by extensive citation of
my work in diverse fields such as innovation [16], collabora-
tive work [17], and management science [18], among others.

From the outset, my measurement and modeling was fo-
cused on having a practical impact, and that led to the choice
of operation support systems to serve as a measurement tool.
This allowed me to help improve software development in
Lucent and Avaya by developing valid measures of software
quality, by establishing clear evidence of the value brought
by basic software development practices, and by deploying
innovative procedures and tools to improve software devel-
opment. In particular, by combining insights from software
development models and software change data, I have con-
structed tools optimally to distribute work [19], estimate and
present developer expertise [10], and improve quality of soft-
ware [20, 21]. Customer Quality Measure (CQM) — the
fraction of customers who encounter defects within three
months of installation — is used to set quality goals for all
major Avaya projects. The empirical relationships between
basic practices (inspection/testing/static analysis) and CQM,
has led to a wide deployment of these practices within Avaya
and, in turn, led to significant improvements in CQM saving
more than US$1.5M 1 in a single project. A case study of
another project looking at the effects of applying risk miti-
gation activities to the one percent of project’s code where
most of customer reported issues were fixed [22], showed
US$300K savings in prevented development effort. The risk
mitigation approach has been, so far, deployed to over 30
Avaya projects.

1Of prevented development effort related to customer issues.

Current Research Audris Mockus, http://mockus.org Nov, 2013 2

3 Vision
Software development is not an isolated activity: apart from
dealing with the technology, individuals, and teams, it also
has to satisfy existing needs, generate new needs, and react
to technical, economic, and political changes. These larger
forces shape and direct software development in new ways as
in, for example, outsourcing/offshoring and cloud comput-
ing. The issues facing software development have to be re-
solved within this broader context. Furthermore, other forms
of human endeavor, such as commerce, support activities,
and games, are conducted in the digital realm leaving traces
of unprecedented detail and generating an explosion of inter-
est in ways to utilize such traces [23].

Cloud computing opens new possibilities for Digital
Archeology by concentrating immense collections of soft-
ware development traces (Googlecode.com has more than
300 thousand software projects and Github.com has more
than six million repositories). Mobile computing and social
networks enrich the traces with the explicit geographic and
social components.

At the largest scale I will derive insights into the behav-
ior of the entire open source and corporate software devel-
opment and of related socio-technical systems. I will cre-
ate a repository of open source, corporate, and government
software project data, create valid measures that describe in-
dividual and organizational behavior at this level. I have
already obtained the collection of most publicly available
source code version history data [4], and I have started a
collaboration with Peking University in China and Queens
University in Canada to collect other sources of data such as
problem tracking systems and mailing lists. From the cor-
porate perspective, I will create a multi-company repository
similar to the one I created for Avaya [3] to study software
and organizational phenomena in a global setting [24, 25].
Such global questions start from basic census: what is the
distribution of code, people, and their activities and how does
it depend on context? Higher level questions would include
comparison of cultures (for example by comparing the cre-
ation of Wikipedias in different languages) and the spread of
innovative practices and artifacts. The answers to such ques-
tions would provide a basis for engineering socio-technical
systems with desired features, for example, longevity.

At the intermediate scale I will study related groups of
projects (ecosystems) in the open source and commercial
environments. A key open question is how do ecosystems
come into being? One hypothesis is that a successful project
will grow until a core team is so large that it can no longer
cope with the increased amount of coordination. Another

critical question is to what extent the context determines the
best practices of software development [26, 27]. For exam-
ple, as a result of acquisitions, Avaya has multiple products
that serve identical business purposes and each uses its own
development and support practices: to what extent are these
practices determined by the company, the technical struc-
ture of the product, or the customer requirements? While
the project context may be a crucial factor that determines
the most suitable tools and practices, experiments that could
control for the context in real software projects are rarely
conducted [26, 28] due to extremely high costs. When con-
ducted, however, they bring surprises, e.g., only the overall
systems size affects maintenance effort [29]. Natural exper-
iments 2 where different companies or open-source projects
produce software with similar functionality would be possi-
ble using multi-company data described above.

At the smallest scale I will study individuals’ micro-
activity while navigating or editing artifacts and interacting
with others. Such data can be obtained via plug-ins of the
authoring environments, e.g., Eclipse, from frameworks that
support analysis of web activities, e.g., Google Analytics,
from sensors of mobile and, in the future, of wearable de-
vices. Such micro-level data could dramatically increase the
power of the higher level models to predict individual’s ac-
tions and motivation.

To solve the outlined challenges, it will be essential to re-
fine and enhance Digital Archeology in several ways. Tech-
nical challenges include scaling to larger and more diverse
data. Analytic challenges include piecing together these un-
structured, dirty, and difficult-to-combine data. Novel anal-
ysis and visualization techniques will be needed to address
these demanding tasks.

In summary, software development involves people,
teams, organizations, culture, and society. My research,
therefore, will both learn from and, also, will contribute to
these domains to the extent that software development mir-
rors any other human endeavor. By clarifying ways in which
software development is conducted it may, therefore, help
make progress answering the basic questions about how peo-
ple organize themselves and their work.

2A natural experiment is an empirical study in which the experimental
conditions are out of the control of the experimenters but treatment assign-
ment is, arguably, random. For example, studies of identical twins separated
at birth to determine relative impacts of genetic vs environmental impact on
development.

Current Research Audris Mockus, http://mockus.org Nov, 2013 3

4 Research Topics

Cost and quality
More than a decade ago, I introduced a methodology that
uses widely available repositories of automatically recorded
project data in change management and problem tracking
systems to model and analyze software development. By
performing statistical analysis of software changes I quanti-
fied the most influential drivers of cost [30, 31], interval [11],
quality [20] and differences between development patterns
in commercial and open source software development [15].
These methods are now widely used throughout the software
engineering community, for example, most defect predic-
tion work uses historic changes and defects as in, for exam-
ple, [32].

The impact of my work dramatically affected practice be-
cause the information crucial for decision making could fi-
nally be obtained without incurring prohibitive costs and de-
lay of manual collection practices [33], thus leading to better
and radically different decisions and practices as outlined be-
low. The impact was not contained within a single company,
but affected the entire industry, including companies such as
Microsoft, IBM, AT&T, and Alcatel/Lucent.

In particular, I developed techniques for precise estima-
tion of productivity gains for a variety of tools and soft-
ware development methods. This led to their adoption
and to changes in development practices as described in,
e.g., [34, 35, 3].

The investigation of quality issues in software patches re-
sulted in the discovery that the desire to increase the revenue
by including new features in patches made it inevitable that
such patches would fail (as the new features greatly increase
the size of patches, and statistical analysis of failures predicts
that sufficiently large patches would fail.) This led, among
other things, to the abandonment of this apparently lucrative,
but harmful practice [36, 20].

Large-scale phenomena
Assembling large, interconnected data sets from multiple
projects and data sources allows us to answer entire classes
of questions about large-scale behavior that could not be ad-
dressed in other ways. I created methods for discovering,
acquiring, integrating, and analyzing these heterogeneous
types of data [37, 38]. A complete collection of data within a
company [3] or an entire collection of open source code [4],
gives us ability to determine the source code origins and au-
thorship via Universal Version History [39, 40] or the spread
of innovation via code reuse [5]. The authorship and code
origin analyses are used in Avaya to identify open source
code, thus addressing key source code licensing issues. More

importantly, by helping to understand who creates code and
how (and by whom) it is later (re-)used in other projects, such
analysis opens the possibility to investigate creativity and in-
novation in software development: an intangible asset that
is both crucial to business success and, at the same time, is
prone to be the first casualty in any cost-cutting, offshoring,
or outsourcing scenario.

Transfer of work

Software development practice is experiencing a radical
change driven by the open source movement, the business
needs to move development to low-cost locations, the aging
and renewal of core developers in legacy products, and re-
cruiting in fast growing Internet companies, all of which are
causing unprecedented turnover in software projects.

To address these challenges, my research investigates the
transfer of work [41] and the associated phenomena re-
lated to organizational change [2] and the growth of soft-
ware project competencies [42]. More specifically, I discov-
ered that the relationship between the social and technical
competencies was associated with the fraction of new par-
ticipants who become long term contributors of a software
project [43]. It provides a tantalizing opportunity to study
how the initial environment a person encounters when join-
ing a team or an organization affects motivation and long-
term behavior.

The findings of performance issues related to transfer of
code [41] and the project expertise [42] led to radical changes
in the way work transfers were handled, in improvement of
the hiring practices at offshore locations, and other substan-
tial changes.

Given the diversity of software projects and the creative
nature of a software development, I sought to find out how
much the context of a project may affect the outcomes by
conducting multi-company studies [26, 25, 24] which took
into account not only technical, but also social [12, 24] as-
pects of software development. Surprisingly, a software
project with identical requirements may cost an order of
magnitude more and require correspondingly more effort
simply because of the differences in the nature of company’s
customer base [26]. This variation can not be explained by
extant effort estimation methods and needs more research,
perhaps using twin-project approach outlined above, to un-
derstand and quantify the reasons for the differences between
products with identical functionality and to develop suitable
estimation tools. At the same time, many phenomena related
to how developers make mistakes leading to software defects
are similar in diverse projects and companies [2, 24, 25].

Current Research Audris Mockus, http://mockus.org Nov, 2013 4

User interfaces, visualization, optimization
I began developing the methods that became Digital Arche-
ology in my earlier work in which I investigated user inter-
faces [44, 45] and the visualization and modeling of complex
phenomena such as the spread of diseases [46, 47], displays
of a large number of images [48], and the response of the
brain to visual or cognitive stimuli [49, 50]. My work on
algorithms involves Bayesian methods of optimization for
non-convex functions [51], boosting methods to optimize pa-
rameters of discrete optimization heuristics [52], clustering
of high-dimensional datasets [53], isotonic regression [54],
and the estimation of a covariance function from irregularly-
shaped spatial aggregates [47].

Way forward
To achieve my goals I will use my diverse skills and, where
needed, I will forge collaborations to address critical prac-
tical issues at different scales and in various contexts, at-
tempting to paint a unified picture of individual and collec-
tive behavior and enabling progress at the critical junction of
society and technology. The topics outlined above are but
examples of what could be achieved by using increasingly
prevalent digital traces for all kinds of phenomena. I will,
therefore, focus on refining fundamental methods of high-
integrity inference from low-quality sources generated by a
variety of operational systems.

References
[1] A. Mockus, R. F. Fielding, and J. Herbsleb. A case

study of open source development: The apache server.
In 22nd International Conference on Software Engi-
neering, pages 263–272, Limerick, Ireland, June 4-11
2000.

[2] Audris Mockus. Organizational volatility and its ef-
fects on software defects. In ACM SIGSOFT / FSE,
pages 117–126, Santa Fe, New Mexico, November 7–
11 2010.

[3] Randy Hackbarth, Audris Mockus, John Palframan,
and David Weiss. Assessing the state of software in
a large enterprise. Journal of Empirical Software Engi-
neering, 10(3):219–249, 2010.

[4] Audris Mockus. Amassing and indexing a large sam-
ple of version control systems: towards the census of
public source code history. In 6th IEEE Working Con-
ference on Mining Software Repositories, May 16–17
2009.

[5] Audris Mockus. Large-scale code reuse in open source
software. In ICSE’07 Intl. Workshop on Emerging
Trends in FLOSS Research and Development, Min-
neapolis, Minnesota, May 21 2007.

[6] Audris Mockus, Todd L. Graves, and Alan F. Karr.
Modelling software changes. In C.E. Minder and
H. Friedl, editors, Good Statistical Practice, pages
175–179. Austrian Statistical Society, Wien, Austria,
July 1997. Proceedings of the 12th International Work-
shop on Statistical Modeling, Biel/Bienne.

[7] Audris Mockus and Lawrence G. Votta. Identifying
reasons for software change using historic databases.
In International Conference on Software Maintenance,
pages 120–130, San Jose, California, October 11-14
2000.

[8] Todd L. Graves and Audris Mockus. Inferring change
effort from configuration management data. In Metrics
98: Fifth International Symposium on Software Met-
rics, pages 267–273, Bethesda, Maryland, November
1998.

[9] D. Atkins, T. Ball, T. Graves, and A. Mockus. Us-
ing version control data to evaluate the effectiveness
of software tools. In 1999 International Conference
on Software Engineering, pages 324–333. ACM Press,
May 16–22 1999.

[10] Audris Mockus and James Herbsleb. Expertise
browser: A quantitative approach to identifying exper-
tise. In 2002 International Conference on Software En-
gineering, pages 503–512, Orlando, Florida, May 19-
25 2002. ACM Press.

[11] James D. Herbsleb, Audris Mockus, Thomas A. Fin-
holt, and Rebecca E. Grinter. An empirical study of
global software development: Distance and speed. In
23nd International Conference on Software Engineer-
ing, pages 81–90, Toronto, Canada, May 12-19 2001.

[12] James Herbsleb and Audris Mockus. Formulation and
preliminary test of an empirical theory of coordina-
tion in software engineering. In 2003 International
Conference on Foundations of Software Engineering,
Helsinki, Finland, October 2003. ACM Press.

[13] Audris Mockus, David M. Weiss, and Ping Zhang. Un-
derstanding and predicting effort in software projects.
In 2003 International Conference on Software Engi-
neering, pages 274–284, Portland, Oregon, May 3-10
2003. ACM Press.

Current Research Audris Mockus, http://mockus.org Nov, 2013 5

[14] Audris Mockus. Analogy based prediction of work
item flow in software projects: a case study. In 2003
International Symposium on Empirical Software Engi-
neering, pages 110–119, Rome, Italy, October 2003.
ACM Press.

[15] Audris Mockus, Roy T. Fielding, and James Herbsleb.
Two case studies of open source software development:
Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):1–38, July 2002.

[16] Georg von Krogh, Sebastian Spaeth, and Karim R.
Lakhani. Community, joining, and specialization in
open source software innovation: a case study. Re-
search Policy, 32(7):1217–1241, July 2003.

[17] Gerard Beenen, Kimberly Ling, Xiaoqing Wang,
Klarissa Chang, Dan Frankowski, Paul Resnick, and
Robert E. Kraut. Using social psychology to motivate
contributions to online communities. In Proceedings
of the 2004 ACM conference on Computer supported
cooperative work, 2004.

[18] Alan MacCormack, John Rusnak, and Carliss Bald-
win. Exploring the structure of complex software de-
signs: An empirical study of open source and propri-
etary code. Journal Management Science, 52(7), 2006.

[19] Audris Mockus and David M. Weiss. Globalization
by chunking: a quantitative approach. IEEE Software,
18(2):30–37, March 2001.

[20] Audris Mockus and David M. Weiss. Predicting risk
of software changes. Bell Labs Technical Journal,
5(2):169–180, April–June 2000.

[21] Audris Mockus and David Weiss. Interval quality: Re-
lating customer-perceived quality to process quality. In
2008 International Conference on Software Engineer-
ing, pages 733–740, Leipzig, Germany, May 10–18
2008. ACM Press.

[22] Audris Mockus, Randy Hackbarth, and John Palfra-
man. Risky files: An approach to focus quality im-
provement effort. In 9th Joint Meeting of the European
Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software En-
gineering, 2013.

[23] Nathan Eagle, Michael Macy, and Rob Claxton. Net-
work diversity and economic development. Science,
328(5981):1029–1031, May 2010.

[24] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts,
and James D. Herbsleb. Software dependencies, the

structure of work dependencies and their impact on
failures. IEEE Transactions on Software Engineering,
2009.

[25] Audris Mockus, Nachiappan Nagappan, and T Dinh-
Trong, Trung. Test coverage and post-verification de-
fects: A multiple case study. In International Confer-
ence on Empirical Software Engineering and Measure-
ment, Lake Buena Vista, Florida USA, October 2009.
ACM.

[26] Bente C.D. Anda, Dag I.K. Sjøberg, and Audris
Mockus. Variability and reproducibility in software en-
gineering: A study of four companies that developed
the same system. IEEE Transactions on Software En-
gineering, 35(3), May/June 2009.

[27] Minghui Zhou, Audris Mockus, and David Weiss.
Learning in offshored and legacy software projects:
How product structure shapes organization. In ICSE
Workshop on Socio-Technical Congruence, Vancouver,
Canada, May 19 2009.

[28] Audris Mockus, Adam Porter, Harvey Siy, and
Lawrence G. Votta. Understanding the sources of vari-
ation in software inspections. ACM Transactions on
Software Engineering and Methodology, 7(1), January
1998.

[29] Dag I.K. Sjøberg, Bente Anda, and Audris Mockus.
Questioning software maintenance metrics: a compara-
tive case study. In Proceedings of the ACM-IEEE inter-
national symposium on Empirical software engineer-
ing and measurement, ESEM ’12, pages 107–110, New
York, NY, USA, 2012. ACM.

[30] D. Atkins, A. Mockus, and H. Siy. Measuring technol-
ogy effects on software change cost. Bell Labs Techni-
cal Journal, 5(2):7–18, April–June 2000.

[31] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using
version control data to evaluate the impact of software
tools: A case study of the version editor. IEEE Trans-
actions on Software Engineering, 28(7):625–637, July
2002.

[32] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Pre-
dicting fault incidence using software change history.
IEEE Transactions on Software Engineering, 26(2),
2000.

[33] R Grady and E Caswell. Software metrics. Prentice-
Hall, Englewood Cliff, 1987.

Current Research Audris Mockus, http://mockus.org Nov, 2013 6

[34] Birgit Geppert, Audris Mockus, and Frank Rößler.
Refactoring for changeability: A way to go? In Met-
rics 2005: 11th International Symposium on Software
Metrics, Como, September 2005. IEEE CS Press.

[35] D. L. Atkins, A. Mockus, and H. P. Siy. Value Based
Software Engineering, chapter Quantifying the Value
of New Technologies for Software Development, pages
327–344. Springer Verlag Berlin Heidelberg, 2006.

[36] A Mockus, H Siy, T Sundresh, J Chen, and TL Graves.
Role of change size, complexity, and developer exper-
tise in predicting the quality of a software update. Tech-
nical Report 10009677-000324-01TM, Lucent Tech-
nologies, 2000.

[37] Audris Mockus. Software support tools and experi-
mental work. In V Basili and et al, editors, Empirical
Software Engineering Issues: Critical Assessments and
Future Directions, volume LNCS 4336, pages 91–99.
Springer, 2007.

[38] Audris Mockus. Missing data in software engineering.
In J. Singer et al., editor, Guide to Advanced Empir-
ical Software Engineering, pages 185–200. Springer-
Verlag, 2008.

[39] Hung-Fu Chang and Audris Mockus. Evaluation of
source code copy detection methods on FreeBSD. In
5th Working Conference on Mining Software Reposito-
ries. ACM Press, May 10–11 2008.

[40] Hung-Fu Chang and Audris Mockus. Constructing uni-
versal version history. In ICSE’06 Workshop on Mining
Software Repositories, pages 76–79, Shanghai, China,
May 22-23 2006.

[41] Audris Mockus. Succession: Measuring transfer of
code and developer productivity. In 2009 International
Conference on Software Engineering, Vancouver, CA,
May 12–22 2009. ACM Press.

[42] Minghui Zhou and Audris Mockus. Developer fluency:
Achieving true mastery in software projects. In ACM
SIGSOFT / FSE, pages 137–146, Santa Fe, New Mex-
ico, November 7–11 2010.

[43] Minghui Zhou and Audris Mockus. Does the initial
environment impact the future of developers? In ICSE
2011, pages 271–280, Honolulu, Havaii, May 21–28
2011.

[44] Stacie Hibino and Audris Mockus. handiMessenger:
Awareness-enhanced universal communication for mo-
bile users. In Fabio Paternò, editor, Mobile Human-
Computer Interaction, 4th International Symposium,

Mobile HCI 2002, Pisa, Italy, September 18-20, 2002,
Proceedings, volume 2411 of Lecture Notes in Com-
puter Science, pages 170–183, Pisa, Italy, September,
18-20 2002. Springer.

[45] S.L. Hibino, T. Graves, and A. Mockus. A web based
approach to interactive visualization in context. In
Advanced Visual Interfaces, pages 181–188, Palermo,
Italy, May 23-26 2000.

[46] W.F. Eddy and A. Mockus. An example of the esti-
mation and display of a smoothly varying function of
time and space - the incidence of mumps disease. Jour-
nal of the American Society for Information Science,
45(9):686–693, 1994.

[47] Audris Mockus. Estimating dependencies from spa-
tial averages. Journal of Computational and Graphical
Statistics, 7(4):501–513, 12 1998.

[48] W.F. Eddy and A. Mockus. An interactive icon index:
Images of the outer planets. Journal of Computational
and Graphical Statistics, 5(1):100–111, 1996.

[49] A. Mockus, W.F. Eddy, S.Y. Chang, and K.R. Thul-
born. Software for the visualization of fMRI data. In
Proceedings of the International Society for Magnetic
Resonance in Medicine Fourth Scientific Meeting and
Exhibitionn, page 1774, 1996.

[50] W.F Eddy, M. Fitzgerald, C. Genovese, N. Lazar,
A. Mockus, and Welling J. The challenge of functional
magnetic resonance imaging. Journal of Computa-
tional and Graphical Statistics, 8(3):545–558, Septem-
ber 1999.

[51] A. Mockus and L. Mockus. Designing software for
global optimization. Informatica, 1(1):71–88, 1990.

[52] A. Mockus, J. Mockus, and L.Mockus. Bayesian
heuristic approach (BHA) and applications to dis-
crete optimization. Fields Institute Communications,
18:153–165, 1998.

[53] W.F. Eddy, A. Mockus, and S. Oue. Approximate sin-
gle linkage cluster analysis of large data sets in spaces
of high dimension. Computational Statistics and Data
Analysis, 23:29–43, 1996.

[54] M. Lavine and A. Mockus. A nonparametric Bayes
method for isotonic regression. Journal of Statistical
Planning and Inference, 46:235–248, 1995.

